GRAPH NEURAL NETWORKS FOR CAUSAL INFERENCE UNDER NETWORK CONFOUNDING

Mṛc ae P Leun † Pante ṛs Loupos ‡

Marc ,

1 Introduction

```
U VA
      11
                                         11
                         U VA
                                                                            X
         X
                                 m
                                                             y
                                                                                           11
           11
                                                                                        \boldsymbol{X}
   11
                                                                                 A
                                   \boldsymbol{A}
      П
                                                                     1 1
11
                                                  11
```

i A **l**

A I #

1.2 Related Literature

2 Setup

 Z_i $(D_i, X_i')'$

$$(X,A)$$
 ε
 O n_y n \mathbb{N} , ε ν X , A
 (X,A)
 A
 (X,A)
 A
 (X,A)
 (X,A)

 A_{S}

2.1 Related Literature

 \mathbf{t} (1,0 \mathbf{t}' (0,0 \mathbf{t}' (0,1 \mathbf{t}' $\mathbf{M_n}$ $\mathbf{M_n}$

$$\begin{split} \hat{}_{i}(t,t') &= \frac{1}{\hat{p}_{t}} \frac{T_{i} - t}{\hat{p}_{t}(i,X,A)} \frac{\hat{\mu}_{t}(i,X,A)}{\hat{p}_{t}(i,X,A)} + \hat{\mu}_{t}(i,X,A) \\ &= \frac{1}{\hat{p}_{t^{1}}(i,X,A)} \frac{\hat{\mu}_{t^{1}}(i,X,A)}{\hat{p}_{t^{1}}(i,X,A)} - \hat{\mu}_{t^{1}}(i,X,A) \ . \end{split}$$

3.1 Architecture

$$\Gamma(\ \ \mu(\ ,\ (\ ,\Sigma(\ ,\min(\ ,\ \max(\ ,\ ,\ \)))))) = \Gamma_1(\ \mu(\ ,\ (\ ,\Sigma(\ ,\min(\ ,\ \max(\ ,\ ,\)))))) = \Gamma_1(\ \mu(\ ,\ (\ ,\Sigma(\ ,\min(\ ,\ \max(\ ,\ ,\)))))) = \Gamma_1(\ \mu(\ ,\ (\ ,\Sigma(\ ,\min(\ ,\ \max(\ ,\ ,\)))))) = \Gamma_1(\ \mu(\ ,\ (\ ,\Sigma(\ ,\min(\ ,\ ,\max(\ ,\ ,\ ,\)))))) = \Gamma_1(\ \mu(\ ,\ ,)) = \Gamma_1(\$$

(. $\hat{f_{\rm GNN}} \ \underset{f \in \mathcal{F}_{\rm GNN}(L)}{\operatorname{argmin}}_{i \in}$

A $f \mathcal{F}_{GNN}(L)$

 $\operatorname{\mathbf{ropo}}_{\mathbf{1}}$ to n on n n n n on ,

 $\mathbf{f_n}(\mathbf{i},D,A-\mathbf{f_n}($ (i , (D , (A , $\mathbf{g_n}(\mathbf{i},D,X,A,\varepsilon-\mathbf{g_n}($ (i , (D , (X , (A , $(\varepsilon$, n

1

A set
$$p \times on$$
 M $n \neq 4 = 0$ $n \neq 4 = 0$

1

 $\mathbf{t},\mathbf{t}^1 (\mathbf{i} \quad \mathbf{n} \\ \mathbf{i}=1$

 $\mathbf{t},\mathbf{t}^1 (\mathbf{i} \quad \mathbf{n}_{\mathbf{i}=1}^n$

 $\Lambda_{\mathbf{n}}(\mathbf{s} = 2\mathbf{M})$

or J $n \sim_{t,t^1} (i \rightarrow n (t,t' n n on o _{t,t^1} (i \rightarrow i(t,t' t' n')))$

5 Approximate Sparsity

A $(\boldsymbol{X}_{\mathcal{N}(\mathbf{i},\mathsf{L})}$

6.2 Nonparametric Estimators

$$\Gamma_2($$

1 1

		L = 1			L=2			L = 3	
n e e H	inglinglings	ingling inger	6,76,76,7 7 7 7	6,76,76,7 7. 7. 7.	6,76,76,7 7-7-7	6,76,76,7 7-7-7	6,76,76,7 7-7-7	6,76,76,7 7-7-7	6,76,76, 1-1-1
$\hat{ au}(1,0)$									
1. Cl. 1.	'₩ '₩ '	ing in the second of the secon	ing ing i			1	' ' 	'₩ '₩ '	΄ ω ΄ ω ω / /

si u ations, he esti and is (1,0) = 0, treated \approx

I

7.1 Comparison with He and Song (2024)

ll .

n 4413

10.01, 0.99

¶ A

 $\mathsf{T}_{\mathsf{i}}^{(1)}$

ADM	GNN			GLM							
		Layer		Layer		Layer		Order		Order	Order
Leader case G_{ee} \bullet \bullet \bullet					•••			**			
G_{all} Leader adopter G_{ee}		• •	• •		• •		• • •		• •	66 5	
G_{sc} G_{all} Adopter case	• •	6 6 5 6 6 5		• •	• • •	• • •	• •		6 6 6 7		6 ' 5 6 6 6 ' 5 6 6
$oxed{G_{ee}}^{oldsymbol{G}}$ $oldsymbol{G}_{sc}$ $oldsymbol{G}_{ll}$	e e e e	6 6 6 6 5	0 0 5 0 0	6 6 5 6 6	0 0 55 0 0		0 0 5 0 0 5		0 0 5 0 0	e e e e	

n = 4413

A Additional Results on GNNs

 $\frac{1}{\mathsf{m_n}} \overset{\mathbf{\ddot{y}}}{\underset{\mathbf{i} \in \mathcal{M}}{}} \hat{\mathbf{p}_{\mathbf{t}}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A}) = \mathbf{p_{t}}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})^{2} = \mathbf{o_p}(\mathbf{n}^{-1/2}).$ U $\frac{1}{\mathsf{m_n}} \overset{\mathbf{\ddot{y}}}{\underset{\mathbf{i} \in \mathcal{M}}{}} \overset{\mathbf{\hat{p}_t}(\mathbf{i}, \boldsymbol{X}, \boldsymbol{A})}{\mathbf{p_t}(\mathbf{i}, \boldsymbol{X}_{\mathcal{N}(\mathbf{i}, \mathbf{L})}, \boldsymbol{A}_{\mathcal{N}(\mathbf{i}, \mathbf{L})})} \overset{^2}{\overset{^2}{}} \quad o_{\mathsf{p}}(\mathsf{n}^{-1/2}). \tag{A}$ $\hat{\mathsf{p}}_{\mathsf{t}}(\mathsf{i},X,A)$ L $\mathsf{p}_{\mathsf{t}}(\mathsf{i},X_{\mathcal{N}(\mathsf{i},\mathsf{L})},A_{\mathcal{N}(\mathsf{i},\mathsf{L})})$ $\mathsf{p}_{\mathsf{t}}(\mathsf{i},X_{\mathcal{N}(\mathsf{i},\mathsf{L})},A_{\mathcal{N}(\mathsf{i},\mathsf{L})})$ i i i i $(oldsymbol{X}_{\mathcal{N}(\mathbf{i},\mathsf{L})}$, $oldsymbol{A}_{\mathcal{N}(\mathbf{i},\mathsf{L})}$ $\frac{1}{\mathsf{n}} \sum_{\mathsf{i}=1}^{\mathsf{p}} \hat{\mathsf{p}}_{\mathsf{t}}(\mathsf{i}, X, A - \mathsf{p}_{\mathsf{t}}(\mathsf{i}, X_{\mathcal{N}(\mathsf{i}, \mathsf{L})}, A_{\mathcal{N}(\mathsf{i}, \mathsf{L})})^{2} - \mathsf{C} \left(\frac{\mathsf{W} \mathsf{L} \log \mathsf{R}}{\mathsf{n}} \log \mathsf{n} + \frac{\log \log \mathsf{n} + 1}{\mathsf{n}} + \frac{1}{2} \right)^{2}$ C

A A W, R, L, n A

A.1 WL Function Class

```
(\boldsymbol{X},\boldsymbol{A},(\boldsymbol{X}',\boldsymbol{A}'
                                                                                    f(X,A \neq f(X',A')
                                                                                                                                            11
                                                                       W
                                                                                                      n W
                                                                                                               11
                                   (\boldsymbol{X}, \boldsymbol{A})
```

1 1

 H^2

 $\mathcal{F}_{\mathrm{GNN}} (L)$

A.2 Disadvantages of Depth

B Verifying §8 Assumptions

$$D_{\mathsf{B}}' \quad (\mathsf{D}_{\mathsf{j}}' \mid_{\mathsf{j} \in \mathsf{B}})$$
 $\mathsf{B} \quad \mathcal{N}_{\mathsf{n}} \; \; \mathsf{U}$

 $^{+} \textbf{I} \\ \\ \textbf{monotion of the constraint of$

 \mathbf{R}_0

1

 $(D'_i | a, b$

Í

$$|\mathbf{p_t}(\mathbf{i}, \mathbf{X}, \mathbf{A}) \quad \mathbf{p_t}(\mathbf{i}, \mathbf{X}_{\mathcal{N}(\mathbf{i}, \mathbf{r}_{\lambda}(\mathbf{s}+1))}, \mathbf{A}_{\mathcal{N}(\mathbf{i}, \mathbf{r}_{\lambda}(\mathbf{s}+1))})| \quad \mathbf{n}(\mathbf{s} +1) + 2\mathbf{R}_0.$$

$$| \quad | Y_i \mathbf{1}_i(t - X, A) \qquad | Y_i' \mathbf{1}_i(t - X, A) | \qquad _{n}(s \rightarrow \wedge_{n}(i, s \ n(i, s - n(s \rightarrow A))) | \mathbf{1}_i(t - X, A) | \qquad _{n}(s \rightarrow A) | \mathbf{1}_i(t - X, A) | \qquad _{n}(t \rightarrow A$$

A 4

 $|\mathbf{R}_1|$ n

$$|\mathbf{R}_1|$$
 $\mathbf{n}(\mathbf{s} + \Lambda_{\mathbf{n}}(\mathbf{i}, \mathbf{s} \mathbf{n}(\mathbf{i}, \mathbf{s} \mathbf{n}(\mathbf{s})))$

$$|Y_i|1_i(t \quad 1_i(t') \quad X, A \quad C(1 + n(i, 1 \quad n(s)))$$

$$|\mathsf{Y_i}| \mathbf{1_i} (\mathsf{t} \quad \mathbf{1_i} (\mathsf{t} \ ' | \ X \quad x, A \quad a$$

$$|\mathsf{Y_i}| \mathbf{1_i} (\mathsf{t} \quad \mathbf{1_i} (\mathsf{t} \ ' | \ \mathcal{C}, X \quad x, A \quad a \ + \mathsf{C} \quad (\mathcal{C}^{\mathsf{c}} \quad X \quad x, A \quad a$$

$$\mathbf{1}_{i}(t \quad 1 \ D_{i} \quad | \ a,b \ , \ V_{i} \quad | \ \ , \\ \mathbf{1}_{i}(t \quad ' \quad 1 \ D_{i}' \quad | \ a,b \ , \ V_{i}' \quad | \ \ , \\ \phantom{\mathbf{1}_{i}(t \quad ' \quad 1 \quad D_{i}' \quad | \ a,b \ , \ V_{i}' \quad | \ \ , } \quad .$$

U C

$$\mathbb{R}^d$$
 (f f \mathcal{L}_d

$$\mathcal{P}_n(h,h';s) = (H,H':H,H') \mathcal{N}_n, H h, H' h', A(H,H') > s.$$

$$\| (\mathbf{f}(Z_{\mathsf{H}}^{}),\mathbf{f}'(Z_{\mathsf{H}^{1}}^{}) - \mathsf{Chh}'(\|\mathbf{f}\|_{\infty}^{} + (\mathbf{f}^{}(\|\mathbf{f}'\|_{\infty}^{} + (\mathbf{f}' - \mathbf{h}')\mathbf{s}))) \|_{\infty}$$

$$\mathsf{D}_{\mathbf{i}}^{(\mathsf{s})} \quad \mathsf{h}_{\mathsf{n}(\mathbf{i},\mathsf{s})}(\mathbf{i},X_{\mathcal{N}(\mathbf{i},\mathsf{s})},A_{\mathcal{N}(\mathbf{i},\mathsf{s})},
u_{\mathcal{N}(\mathbf{i},\mathsf{s})}$$
 .

$$\begin{array}{lll} \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}^1)}^{(s)} & (\textbf{D}_{\textbf{j}}^{(s)} \ _{\textbf{j} \in \mathcal{N}(\textbf{i},\textbf{s}^1)} \ ^{\textbf{i}} \\ & \mathbf{1}_{\textbf{i}}^{(s)}(\textbf{t} \quad \mathbf{1} \ f_{\textbf{n}(\textbf{i},\textbf{s}/2)}(\textbf{i}, \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}^{(s/2)}, \mathbf{\mathcal{A}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)} \ \mathbf{t} \ , \\ & \mathbf{Y}_{\textbf{i}}^{(s)} \quad g_{\textbf{n}(\textbf{i},\textbf{s}/2)}(\textbf{i}, \mathbf{\mathcal{D}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}^{(s/2)}, \mathbf{\mathcal{X}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}, \mathbf{\mathcal{A}}_{\mathcal{N}(\textbf{i},\textbf{s}/2)}, \boldsymbol{\varepsilon}_{\mathcal{N}(\textbf{i},\textbf{s}/2)} \ , \\ & \mathbf{Z}_{\textbf{i}}^{(s)} \quad \mathbf{1}_{\textbf{i}}^{(s)}(\textbf{t} \ (\mathbf{Y}_{\textbf{i}}^{(s)} \quad \boldsymbol{\mu}_{\textbf{t}}(\textbf{i}, \mathbf{X}, \mathbf{A} \\ \end{array}$$

$$\mathcal{L}_{\textbf{h}} \quad \mathcal{L}_{\textbf{h}^1} \;\; \textbf{s} \quad 0 \;\; (\textbf{H},\textbf{H}' \quad \; \mathcal{P}_{\textbf{n}}(\textbf{h},\textbf{h}';\textbf{s}$$

$$\mathbf{Y_i^{(s)}} \quad \mathbf{g_{n(i,s)}}(\mathbf{i}, D_{\mathcal{N}(\mathbf{i},\mathbf{s})}$$
 , $X_{\mathcal{N}(\mathbf{i},\mathbf{s})}$, $A_{\mathcal{N}(\mathbf{i},\mathbf{s})}$, $\varepsilon_{\mathcal{N}(\mathbf{i},\mathbf{s})}$,

$$f((Y_{i\ i\in H} \qquad f'((Y_{i\ i\in H^1} \quad ^{(s)} \quad f((Y_{i}^{(s)}_{i\in H} \quad ^{(s)} \quad f'((Y_{i}^{(s)}_{i\in H^1} \quad A$$

$$\hat{\mathbf{p}}_{\mathbf{t}}(\mathbf{i}, oldsymbol{X}, oldsymbol{A}$$

$$\Delta_{\textbf{i}}(\textbf{t} - (\hat{\mu}_{\textbf{t}}(\textbf{i} - \mu_{\textbf{t}}(\textbf{i} - \textbf{p}_{\textbf{t}}(\textbf{i} - \textbf{1}_{\textbf{i}}(\textbf{t}$$

Bronstan M https://towardsdatascience.com/do/we/need/deep/graph/neural/networks /be 2d ec c A Brun. Co n n X n XΑ ٠A VI Crno, do, DCt Mo, MO Dhr E Dato, Cnan n o n · · onoou nA D B h h h h h h h h h h h h h h h h VI D root M " oun o A n A ooun o ono Dh h C oh Zurnt Y B no a n X Br non " n - X \mathbf{E} n 🔩 r, C, M pon, n B nn 😘 U A X n X \emptyset 5 Frr M 1 Α X n XMan Man in I ono

 \mathbf{F} , \mathbf{M} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n}

For X r, E A ro A, n F M A

A n A o on

ro , M ... A ... A ... A ... A ...

oun o

No v o o o o

oraf, Mar o n ht " //
U /A u o

The second of th