Volume-preserving maps with an invariant
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Volume-preserving maps arise from the study of the flow
of incompressible fluids or magnetic fields. If a volume-
preserving map has a continuous symmetry, such as a
rotational symmetry, then it has an invariant and the or-
bits are confined to surfaces. More generally, the orbits
could densely cover regions with nonzero volume. Here
we construct maps that have an invariant, but no(obvi-
ous) symmetry. The dynamics of these maps, while sim-

y,z!h. ~1!



grable, area-preserving maps was devised by Sitis stud-
ied maps of the second difference form,

Xi+1— 2%+ X¢— 1= €F~X;, el, ~6!

which can be thought of as an area-preserving map upon
defining the variablesx(x’) = (x;_1,X%;). Under the assump-
tions thatF and F are analytic and the invariant has the
form,

F~x,x",el=F~x',x,e!= Fy-x,x" 1+ e F~x,x"1, ~7!

Suris showed there are exactly three possible families. For
these cases the correspondiqgs rational inx, in trigono-
metric functions ofx, or in exponentials ok, respectively.
The three examples of the forsi! that we construct in Sec.

Il correspond to these three cases; however unlike Suris we
have not shown that our solutions are exhaustive.

Other examples of integrable symplectic maps have also
been found. Suris’ techniques have been used to find higher
dimensional, integrable symplectic mdpsAnother tech-
nigue that gives many examples is to find appropriate dis=|.
cretizations of integrable differential equations; these can b
treated with the methods obtained from inverse scatterin
theory:>* F_inally, maps Wit.h integrals_ have_ been CONihle substitution rules have the function,
structed as integration algorithms for differential equations
with conserved quantitie'. F-x,y,zl =x?+y?+ 27— 2xyz—1, -9l

In this paper we will study volume-preserving maps on

his map has a form similar td! and is volume-preserving,
But the change in sign in the last term means the map is
%rientation—reversing. All trace maps that arise from invert-

3 - ) ; as an invariant. Roberts calls this function the Fricke—Vogt
1", Such maps are useful in understanding the motion Ofariant?® it is an example of a group theoretic invariant

passive tracers in fluids and magnetic field line cajed 4 character. In this case! arises from the trace of the
configurations**> They are also of interest since many phe- . or iTtion-7r0 9 0.34 096ic (xy2)T] IF6t:2

nomena in the two-dimensional case are not yet completely
understood in higher dimensions. Such phenomena include
transport®’ the breakup of heteroclinic connectioffs;?®

and the existence of invariant t3fi?* These maps are also
important as integrators for incompressible flows; in some
cases the maps are constructed to be volume-presériifrg,
and in others to preserve the conserved quantities of the
flow.*?

A prominent class of volume-preserving maps that have
an invariant are trace map$Physically, these are obtained
from the Schrdinger equation with a quasiperiodic
potential’’ Mathematically, they arise from substitution rules
on matrices®?®2° As an example, consider matricésB
e SL(2,R), the group of %2 matrices with unit determi-
nant. A substitution rule acts on a string of matrices and
corresponds to replacements of each occurrenck afd B
with strings of these matrices. One of the most studied ex-
amples is the Fibonacci substitution rule which corresponds
to A—B andB—AB. The trace map is determined by the
action of this substitution on the traces of the matrices. De-
fining x=3Tr(A), y=3Tr(B), andz=3Tr(AB), then the
substitution rule givesx'=3Tr(B)=y, y'=3Tr(AB)=z,
andz’=1Tr(BAB)=3Tr(AB?) = —x+2yz, where we use
the Cayley—Hamilton theorem to simplify the last equation.
Thus we obtain the three-dimensional mapping,

f~x,y,z2!=~y,z,—x+2yzl. ~8!



orbits and their bifurcations. The existence of the invariant
implies that these orbits come in one parameter families that
are transverse to the level sdi,, except at bifurcation
points. We will also show some numerical examples of the
dynamics.
One reason for studying maps of the forbh is that they
are volume-preserving for arbitrafy. Moreover, this form
also arises quite generally for the case of quadratic automor-
phisms. Accord utomorRef.9etn3(th30,9etn3(thany9etn3(such9etn3(ps)(utomorh)-466.3(th)-402omonon]TJ T* [(phtrivial,298.9¢



condition. In such casesf; is a polynomial of degree at
most two in each variable. SincE, is even and invariant
under cyclic permutation, we have

fox,y,z'=agx>+y?+ 7%
+bo~X?y2+y?Z2%+ 22x%1 + ¢y X2y?Z%,  ~23
up to additive constants. Fror20! it follows that
~F-x,y,ul+ F~x,y,—ullF|,
— —2Fx,y,ulx]Tj/ - %5 021 .9 6385 147 . 5395616 . 564 Tm(eTj/F17 1 TF_978009.978 142 . 251 6.



FoXxy,z2l=F,y,z,—X+2eF-~y,zell.
Then the symmetry ansatz,5!, should be replaced by

FeXYy,z2l=F~y,z,x!.



so that the remaining multipliers satisf¥;+1,=t—1.
These two multipliers correspond to the map restricted to the
invariant surface when the orbit is not in the critical sefof
Thus if we consider the restricted map, the periodic orbit is
elliptic if —1<t<3, hyperbolic with reflection ift<—1,

and hyperbolic ift>3. If t=—1, the restricted map has a
double multiplier at—1, so that a period-doubling is ex-
pected. In the case=3, 1 =1 is a double eigenvalue and a



Solutions only exist whem<—2 or a>18g—2. When
a<-—2, ~34! represents one closed curve. Far18g— 2,
~34! corresponds to two closed curves lying on each side of
y=x+z.

For the special casg=0, we can relatively easily clas-
sify the possible topologies of the séds,. In this case there
is at most one critical orbit in each of the classes described
above. We label the critical levels corresponding to<G#
by m; . When they exist, the critical levels appear in the order

m2< m3: m4< mo: 0

while m; may vary in the ordering.

When a< —2 there are two period six orbits. The first,
~C2!, is born atm, which has an expression—arising from
the discriminant of-33l—that is too long to display. The
second period six orb#C3! is born at

-2+al?
4g

m3: -

The critical circle-C4! exists whenb=—2g anda<—2. In
this casemn,= m3=m,, and the orbitsC2! and~C3! become
part of the critical curve. Finally the period two critical orbit
arises only when (+ a)/(g— b)<0 at the level

3-a—11°2

M= p—gr

In the special cas@a=1,9=b



Even though the fixed point at the origin is critical, it always
has one unit multiplier since it lies on the curve of fixed
points. It is elliptic when—3<a<1.

Period two points have the formxfy,x)— (y,x,y),
wherex andy lie on the curve

g-X*+y?*1+
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~C1! my=—(a—1)?/4g, corresponding to the critical period

two orbit.

~C0! my=0 corresponding to the critical point at the origin.
The fixed points lie on the linex(x,x). If a<—3 there

are no fixed points oM, until



The right panel shows the dynamics far=1.0. Here one that are associated with two elliptic period five orbits. For
can see a prominent islangburpld enclosing one of the larger m, as shown across the bottom row in Fig. 8, the
elliptic fixed points. Again the invariant surface is divided islands around the elliptic fixed points remain prominent.
into two large chaotic domains. For>1.1 the large invari- Also visible are two elliptic period four orbitdight blue and

ant circles have been destroyed, and the two chaotic zonegeen in the bottom-middle panel at=5. Apart from these

are joined. There are prominent elliptic regions until after theislands, which persist on the unbounded componentsnifor
fixed point orbit period double§from ~39!, m=3.75]. For >18.75, the dynamics on these sets appears to be largely
larger m the dynamics appears nearly uniformly chaotic;unbounded.

however, amongst the chaotic orbits are the islands surround-

ing the two elliptic period three orbits. These become more

visible for largem. IV. CONCLUSIONS
The orbits for the case corresponding to Fig. 4 are shown
in Fig. 7. Wheni<m<0, the orbits that lie on the pair of We have used the methods of Suris to find several fami-

spheres enclosing the critical period two orbit are predomidies of volume preserving maps @it that have an invariant.
nantly regular, as can be seen in the left panel.nAgp-  Unlike Suris, our solutions do not appear to be exhaustive. It
proaches 0, the chaotic regions grow, and they dominate th&ould be interesting to obtain such a classification. We have
critical surface/n=0, as seen in the middle panel. There arenot found any polynomial maps that have an invariant be-
also large islands surrounding the elliptic period two orbits atyond the trace maps8!—10!. It may be that there are no
this level. Nearn=0.42 a family of invariant circles appears polynomial, volume-preserving maps which have an invari-
that divides the chaotic region into two parts, as can be seeant that satisfies the condition$5!—16!; our results show
in the right panel. These circles are destroyedbyl.8, and  this is true wherF is a homogeneous quadratic function.
as before, apart from the elliptic period three orbits, the dy-  Both topologically and dynamically our maps are richer
namics is largely chaotic as becomes large and the invari- than the well-known trace maps. We do not know if there is
ant surface acquires its hourglass shape. a set of parameter values for which our maps are “com-
As a final example, we consider the parameters correpletely chaotic” on an invariant surface; this was one of the
sponding to Fig. 5. For this case, orbits on compact compoprominent features of trace maps, which are semiconjugate
nents of six level sets are shown in Fig. 8. In the top-leftto an Anosov system on the tetrahedral critical level set of
panel,m<—1, and the orbits lie on a family of six spheres the Fricke—Vogt invariant.
enclosing the-C2! orbit. In the next panel, these spheres In the future it would be interesting to investigate the
have joined at theC3! orbit, and the dynamics appears uni- dynamics of these maps composed with a small perturbation
formly chaotic. In the top-right panelm=0, the torus that destroys the invariance &f. Is the transport between
pinches at the origin. The red and black orbits encircle thdevel sets more efficient when the dynamics on the surface is
elliptic fixed points. Also shown are green and yellow orbitschaotic?



.

FIG. 8. ~Color Orbits of~1!
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