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Figure 2. The Change and Find menus for StdMap. In this tutorial, we
denote a menu selection using the → symbol, thus Change → Show Axes in-
dicates that we are selecting the sixth item in the change menu. This item
is checked since the axes are currently shown. Selecting it will toggle the
display of the axes in the plot window. Your selections in this menu will be
remembered the next time you start StdMap.

Figure 3. Chaotic orbits appear to densely cover a fat fractal like this set
generated by iteration of a single initial condition for k = 1.0 (left pane) and
k = 2.0 (right pane).

proven [9,10]. How long do you have to iterate until the trace of the orbit settles
down and no new pixels are filled? If you have a monitor with many pixels, this
time can be very long indeed [11]. If we change the parameter value by selecting
Change → Map Parameters..., and typing the value 2.0 for k in the Parameter
Dialog window, the large chaotic region has the form shown in figure 3.
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Figure 4. Iterating the standard map one step at a time for k = 0.3.

Often iteration in StdMap is too quick to really see what is going on; there are
two ways to slow it down. One is to change the iteration mode in the Find menu.
In particular Find → Single Step (spacebar) stops the iteration and moves the
point forward (now drawn as a small square instead of a pixel) only when you hit the
spacebar, recall figure 2. Let us also change the parameter of the map to something
smaller so that there is less chaos, choose Change → Map Parameters..., and type
the value 0.3 for k in the Parameter Dialog window. Note that the current value
of k is displayed at the bottom of the plot window. Now when you click on an
initial point, and repeatedly hit the spacebar to iterate step-by-step, you will see a
portrait like that shown in figure 4 [12].

Iterating one step at a time reinforces the fact that maps are dynamical sys-
tems with discrete time. Another key feature of the map (1) is that the horizontal
distance between successive iterations grows with the momentum value. Mathe-
matically this is an example of the twist condition,

τ =
∂x

�

∂y
�= 0. (2)

For the standard map, τ = 1, and so it twists to the right. Perhaps a better way
to visualize twist is to iterate a curve of initial conditions instead of a single point.
You can do this in StdMap by selecting Find → Curve... or typing -J, recall
figure 2. This will open the curve dialog, as shown in figure 5. There are five
types of curves that you can iterate, and you can select one by clicking in one of the
boxes. For this demonstration, click on the middle box, which selects the line type.
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4. The onset of chaos

The standard map is integrable when k = 0. Indeed for this value of k, the mo-
mentum is an invariant, and all the orbits lie on horizontal curves. More generally,
an area-preserving map is integrable [1,16] if there exists a non-constant function
I(x, y) such that

I ◦ f = I.

There are several other integrable maps that can be studied in
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Figure 6. Overlay showing the evolution of two orbits beginning at k = 0
as k is incremented. In the left pane, an initial circle y ≈ 0.02 evolves to the
chaotic trajectory near a period-4 saddle when k = 2.25. In the right pane, the
initial circle at y ≈
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when k = 2.0. This particular period-5 orbit is a saddle [21]. We can determine this



J D Meiss

Turning on the residue calculation for the (2, 5) orbit at k = 2.0 and finding the
orbit again, gives R = −11.88, confirming that this orbit is also a regular saddle.
Indeed, if you start iterating at this orbit, by selecting Find → Continuously
(which automatically fills in the initial condition of the last orbit) you will find that
the instability leads to numerical error: the iteration falls off the periodic orbit and
rapidly covers the chaotic fat fractal shown in figure 3. Another way to see this
is to find the (2, 5) saddle, Find → Periodic Orbit..., and then immediately
select Find → Single Step to start single-step iteration at the point (6). As you
iterate with the spacebar, you will see that the orbit visibly deviates from the
periodic orbit after about 40 steps. For the given residue, the unstable eigenvalue
of M is λ+ = 49.5, so that any error grows by a factor of λ

N/5
+ ≈ 4 × 1013 by

N = 40; thus given the inevitable truncation error of double-precision floating
point computations, it is not surprising that the orbit is lost.

There are better ways of investigating the properties of hyperbolic saddles, as we
describe next.

5. Stable manifolds

The stable and unstable sets, W
s and W

u, of an invariant set Λ are defined as

W
s
Λ ≡ {(x, y) : f

t(x, y) → Λ as t → ∞},

W
u
Λ ≡ {(x, y) : f

t(x, y) → Λ as t → −∞}. (9)

If Λ is hyperbolic, then these sets are smooth submanifolds that are tangent to
the eigenspace of the linearization of the map at Λ [24,25]. For example, at the
hyperbolic fixed point (0.5, 0), the linearization (7) has eigenvectors

v± =
(

1
1 − λ∓

)

with λ± = 1
2 (2+k ±

√
k(k + 4)). When k > 0 the +-eigenvector corresponds to the

unstable direction, and since λ− < 1, it has a positive slope. The stable direction
has negative slope. The stable manifold theorem implies that W

u,s are smooth
curves that start at (0.5, 0) with slopes 1 − λ∓.

To find these, StdMap
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W
u for the (p, q) orbit. If these points are more than one pixel apart the program

inserts a new point between them using linear interpolation.
Hitting spacebar again causes all of the points on the fundamental segment to

be iterated q more times, and more points to be interpolated as needed. The
result is a growing curve forming the unstable manifold. The color scheme follows
a convention suggested by Bob Easton: red – for unstable – represents the blood
moving away from the heart, and blue – for stable – represents the blood returning.
The fundamental segment is stored in the large array and iteration will stop if this
array fills up. Examples of unstable manifolds for k = 1.0 and 2.0 are shown in
figure 7. Though W

u begins life as a nearly straight line along v+, it rather quickly
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Fix(S1) = {(0, y)},

Fix(S2) = {(x, y) : x = y}. (11)

jdm
½

jdm


jdm
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Figure 8. Four forward and four backward iterates of the symmetry lines
for (1) at k = 1.3 and several orbits near some elliptic, symmetric orbits.

The generalized standard map also has the inversion

I(x, y) = (−x, −y)

as a symmetry when F is odd. This symmetry can be used in StdMap to ‘mod’
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Table 1. Symmetry lines containing (p, q), symmetric periodic orbits for a
reversible map with reversor S1 and discrete rotation symmetry R. Here
S2 = f ◦S1, S3 = S1 ◦R and S4 = S2 ◦R
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Figure 9. Symmetry lines and some symmetric orbits for the standard map
with k = 1.0.

The first two entries in the symmetry menu, Minimizing and Minimax refer to the
action-minimizing and minimax orbits of Aubry–Mather theory, see [1] for a review.
The minimizing orbit is always hyperbolic [39] and corresponds to the second orbit
above. The minimax orbit has positive residue and, when k is positive and small
enough, it is elliptic. It has a point on the dominant symmetry line.

7. The critical golden circle

The (0, 1) resonance surrounding the elliptic fixed point is enclosed by a con-
nected chaotic region generated by the unstable manifold of the (0, 1) saddle orbit.
Chirikov noticed that this chaotic region appears to be bounded when |k| � 1 and
unbounded for larger values of |k| [40]. One way to see this is to look for climbing
orbits, that is orbits that move from y = a to y = b for a < b. StdMap provides
a convenient way to do this experiment: select Find → Transit Time.... The
program then asks you to drag the mouse over a rectangle, Ri, in which the initial
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Figure 11. Golden mean invariant circle and approximations to the Cantori
for the standard map at k = kcr, 0.974, 0
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