
J C t Ne ; ci (2015) 39:235 254 DOI 10.1007/ 10827-015-0574-4 2012). I stat, the te sa atter f the ti ... -

1 Variabe a d a a eter w ith their defa t a e

S . b	De çi ti
Va; iab e	
I_j	Ete; a ti f; e citat; ati j
u _j	N -die i a fi; i g; ate fe citat; ati j (a i $u_j = 1$)
V	N -die i a ficig; at efg ba i hibit; . at i (a i $v = 1$)
p_j	Let f faci itali f a e f: ati j (ba e i e $p_j = 1$)
W _{jk} , W	St; egth fecitati f; ati k tecitat; ati j
Тј, Т	Desati fiti
Ti e a;a ete;	(defa t a e i a e the i)
	Tie cae fe; a firig $(10 - 6)$
f	Ti e ca e f h \mathfrak{rte} faciitati (1^4)
W	Ti e ca e f ea; i g; $e(150^{-1})$
а	Ti e ca e f ada tati (400^{-5})
S	The case f attice to the the static $(50 - 6)$
T _{cue}	D _s ati f ti , t t; igge; ; e a $(50 - 2^{,3})$
D	De a i ; e a tic fi; i g affecti g c ecti bet, ee ati $(30, 1)$
D'	De a i c e a tic fici g affecti g c ecti s ithi ati (20 ¹)
Other ara eter	(defataei a; e the i)
	Firigratere ef cli (Hea i ide te f cli)
	The h df cactiati fe citat cati (0.5)
V	The h df, actiati fi hibit, ati (0.5)
p_{max}	Marian e e f h st test faci itati (2)
Z_k	St; e gth f e citati f; ati k t i hibit; ati (0.3)
L	Weight fg ba i hibiti (0.6)
b	Stee gth fada tati (1)
M	Lea; $i g$; $e th; e h d(1)$
W _{max}	Ma i a tic _y eight bet ee ati (0.4852)
W' _{max}	Ma i a tic _y eight _y ithi ati (4.1312)
W _{min}	Mi i a tic _{ψ} eight _{ψ} ithi ati (1.3488)
d	Ste gth fLTD0 6.4598999 194.03999328 369.368985f h hh

a ... ti i. if ied the a a i, b t $_{\underline{w}}$ a t ece a

T g at a tee that g ter a ticit ead t a ; e e c di g f e e t ti e , it i ece at that the eat ed w eight, w_{21}^{∞} gi e b E . (6), at che the de it ed w(T) gi e b E . (9). Thi ca be achie ed b e at i g the tight had ide f E . (6) ad (9), that

(Ke. te; et a. 1999; Pfite; a d Ge; t e; 2006; C ath et a. 2010).

T de. tateh w theti i g fe e t ca be e c ded i the $e_{i_{x}}$, a_{x} chitect, $e_{i_{x}}$, e_{x} tat i_{x} ith i_{x} . ati (Fig. 2). D ; i g t; ai i g, at i 1_{W} a ti at edf; T_1 ec d f ; ed b ti at i f at 2 (Fig. 2a). The ti... _{iv} a t; g e . ght d . i ate the d a. ic f the ati ; e e (Secti 2). Whi e the fir t ti , a ceet, ati 1 a actie a d LTD d i ated, dec ea i g the a tic_w eight, W_{21} , f: . ati 1t ati 2. Afte: T_1 ec d, the fi; t ti e ded, a d the ec d ati $_{i_{x}}$ a acti ated. H $_{i_{x}}$ e e, ati 1 did t bec e i acti e i ta ta e , a d f; eti eb th ati $1 \text{ a d } 2_{y}$ e e acti e. D; i g thi et a _w id _w, LTP d i at ed eadigt a i c; ea e i a tic weight W_{21} . Sh ft after ati 1 beca e i acti e, cha ge i the_w eight W_{21} cea ed, a a ticit

cc ; w he the ; e a tic ati i acti e. The i itia a d fi a a tic w eight $(w_{21}^0 a d w_{21}^1, ; e ecti e)$ ca be c ted i c ed f ; (Secti 2). Re eated ; e e tati f the t ai i g e e ce ead t e e tia c e ge ce f the a tic w eight , w_{21}^i (w eight after in t a i g t i a), t a fi ed a e (Fig. 2b). O the the ha d, the a tic w eight w_{12} i w ea e ed d ; i g each t i a beca e the ; e a tic ati 2 i a a acti e after the t a tic ati 1 (Secti 2). I the ca e f N ati , each w eight $w_{k+1,k}$ i c e ge t a e a ca ciated w ith T_k , w here a a the w eight w i bec e egigib e d ; i g ; e a . Th , the end w ; th ct ; e e e t a e c de the ; de; f the e e ce.

The d; at i factiati i at i 1, T_1 , detern i e the e i i b; i a e f the at ic weight f; ati 1 t at i 2, w_{21}^{∞} (Secti 2). F; argern a e f T_1 , LTD at ger, we are i g w_{21} (Fig. 2c). He ce, ; ed a echa i f; ti e-ee ig (B. a 2000; D; te, it 2003; Re ti a et a. 2004; Ka; a; a; a d B. a 2007; Ga; i et a. 2009). With t ch a ;; ce, ced acti it ;; d; e t i a e e ce ; e a ed i the ; e; cde;, b t i f; ati ab t e e t ti i g_{W} d be t.

F; i. icit we f c ty ati , where actiit f the first ati ; e; e e t ati ed e e t (Fig. 3). T i. if the a a i, we a a ed that a tic weight are fired d; ig; e a. Thi a ti i t e e tia (Secti 4.4). After ati 1 i acti ated with a brief c e, it; e ai acti e d e t ; ec; se t e citati (Secti 2 (i g 20,000 i itia w^0). The a tic weight after the ith that i g, w_{21}^i , i de c ibed b a c babilit de it f cti that c erge i the i it f a trailig tria. The ea (de) f thi dit ib ti i the t i e a e f the eared a tic weight after ce eated ce e tati f the e e ce (Fig. 5c). The aria ce f the eared a tic weight, w_{21}^{∞} , a e c a thi, ca a the c e f a $_{K}$, ti e t a cig c ce (Be da a d H e 2003), i tead f h c t t e faciitati . I c t a t t the ca e f h c t t e faciitati , ada tati ca e the effecti e i t f e at t t deceae e t i e.

I thi ca e ati acti it _w a de ed b

$$\frac{\mathrm{d}u_j}{\mathrm{d}t} = -u_j + (w_{jj}u_j + s_j - Lv - a_j),$$

$$a\frac{\mathrm{d}a_j}{\mathrm{d}t} = -a_j + bu_j,$$

$$s\frac{\mathrm{d}s_j}{\mathrm{d}t} = -s_j + \sum_{\substack{k \neq j \\ k \neq j}}^N w_{jk}u_k,$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -v + \sum_{\substack{k=1}}^N Z_k u_k - v,$$

where a_j de te the ada tati e e f ati j, a^{i} the ti e ca e f ada tati , a d b i the ada tati tre gth. Feedbac betwee ati w_{i} a a ed t be w_{i} er tha feedbac w_{i} ithi a ati ; th , the t ta i t f; ati $j_{w_{i}}$ a it it e f-e citati $(w_{jj}u_{j})$, a d a tic i t f; the ati $(s_{j})_{w_{i}}$ hich e ed the ti e ca e s. N te that i the i it $s \rightarrow 0$, a e are i ta ta e .

F; a itabe ch ice f a; a ete; , g ba i hibiti t; ac acti it fa te; tha e citati bet, ee ati . The, whe a ati bec e i acti e d e t adatati , the e e f g ba i hibiti dec; ea e, a wig be et ati t bec e acti e. Thi ea the weight f e f e citati ca e c de ti i g. Th , i thi et we de ed g te; a ticit within a ati a we . The ea; i g; ef; w_{jj} , a a a g t w_{jk} , ith the additi a a ti that i ce w_{jj} ; e; e e ted the a tic weight within a ati , it c d t dec; ea e be we ace; tai a e w_{min} . A , the a; a ete; f; g te; a ticit withi a ati a; e a we d t be diffe; e t f; the a; a ete; f; g te; a ticit bet, ee ati .

The ear i g: e_w a the

.

$$w \frac{\mathrm{d} w_{jj}}{\mathrm{d} t} = - \frac{i}{d} (w_{jj} - w_{min}) u_j (t - D') (1 - u_j (t)) - \frac{i}{p} (w_{jj} - w'_{max}) u_j (t - D') u_j (t).$$

When the stating a solution and $(u_1(t) \approx 1)$ f; $t \in [0, T_1]$ (Fig. 7a), the change in the weight w_{11} we even for $u_1 = 0$ and $w_{11} = 0$.

$$\frac{\mathrm{d}w_{11}}{\mathrm{d}t} = \begin{array}{c} 0, & t \notin [D', T_1 + D'] \\ \frac{\dot{D}}{w_{i}}(w_{max}' - w_{11}) & t \in [D', T_1] \\ -\frac{\dot{D}}{w_{i}}(w_{11} - w_{min}) & t \in [T_1, T_1 + D']. \end{array}$$

The f $_{W}$ ige ati ; eate the a tic $_{W}$ eight at the e d f a ; e e tati , $W_{11}(T_{tot})$, t the a tic $_{W}$ eight at the begi ig f the ; e e tati , $W_{11}(0)$:

$$w_{11}(T_{tot}) = w_{11}(0)e^{-T_1 p' w}e^{(p-d)D' w} + w'_{max}e^{-D' d' w}(1 - e^{-(T)})$$

Thi ear ig ; ce i ditict f; the a ; ach tied i (B. a a d Maa 2009; He e i et a. 2014), i ce it e t; ai the; ec ;; e t a; chitect ; e bet, ee ati e c digti e; t ig f a d ; t; ea ; ead t i ece a; .

There is a arge et f ar a eter f ; , hich the $e_{V_{i}}$; ca

t cc c. Thi a de there i de ter a ig a i dicati g h_y, acc c ate the e de ce i bei g c e a ed. F ci ta ce, h a ef c, a ce f a iece f di c c e ie

- F ; ca d-T; c e, N., Ha e, D., Va V; ee $_{v}$, ij , C., & B; e, N. (2003). H $_{v}$, i e ge e ati echa i deter i e the e -; a ; e et f ct ati g i t . *The Journal of Neuroscience*, *23*(37), 11,628 11,640.
- Ga di e, C.W. (2004). Handbook of stochastic methods. Be i : S ; i ge .
- Ga; i, J.P., & Bea; M.F. (2014). Lea; ed alite; a e e ce cec g ili a d cedicli i ci a; i a c cte. *Nature Neuroscience*, 17(5), 732–737.
- Ga; i, J.P., Sh e, M.G.H., L e_{g} e tei, Y., Bea, M.F., & Sh a, H.Z. (2009). Lea; i g; e_{g} adti i g i c; te th; gh; e_{g} ad de e de t e; e i f a tic a ticit. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6826–6831.
- Ge; te;, W., & Kite;, W.M. (2002). Mathe atica f; a-

- M $\mathfrak{c}\mathfrak{c}$ e, M.C., R , J., & B $\mathfrak{c}\mathfrak{c}$, D. (2005). Saccadic e e e e t ca e c \mathfrak{c} e i fti e a \mathfrak{g} e a ace. Nature Neuroscience, $\mathcal{B}(7)$, 950 4.
- Naba i, S., F., R., P., ..., C.D., Li, J.Y., T ie, R.Y., & Mai w., R. (2014). E gi ee; i ga e., i h td a d t . *Nature*, *511*(7509), 348 52.
- Oh, M.C., De ach, V.A., G ie, E.S., & S de i g, T.R. (2006). E tra a tic e bra etraffic i greg ated b g r 1 eri e 845 h h; ati ri e a arecet r f r g-ter te tiati. *The Journal of Biological Chemistry, 281*(2), 752 8.
- Oja, E. (1982). Si ified e, de a a i ci a c e t a a e. Journal of Mathematical Biology, 15(3), 267 273.
- Peri, R., Berger, T.K., & Mar, a., H. (2011). A a tic ; ga i i g ; i ci ef; c; tica e; a g . . Proceedings of the National Academy of Sciences of the United States of America, 108(13), 5419 5424.
- Pfite, J.P., & Gette, W. (2006). T; i et f i e i a de f i e ti i g-de e de t a ticit. *The Journal of Neuroscience*, *26*(38), 9673 9682.
- Pf; d; e he; , P.Q. (2003). A dit; feedbac i ... ic ef; a ce: E ide ce f; a di ciati f e e ci g a d ti i g. Journal of Experimental Psychology: Human Perception and Performance, 29(5), 949.
- Phi t, B.D., Se ha, A.K., Sh a, H.Z., & Bea, M.F. (2001). Vi a e e e e ce a d de ci ati bidicecti a dif the citi a df. cti fNMDA; ece t ci i a c cte. Neuron, 29(1), 157 169.
- P ; i i, C., Na d, R., Me i, S., & Gette, W. (2013). Te ; a white i gb we-a adatati i ectica e; . Nature Neuroscience, 16(7), 942 948.
- Ra, R.P., & Sej , i, T.J. (2001). S i e-ti i g-de e de t hebbia aticit a te ; a diffe; e ce ea; i g. Neural Computation, 13(10), 2221 2237.
- Re ti a , J., Ya e , V., F. i, S., & Se , W. (2004). C i bi g e; a acti it a a e e t-ba ed c; tica; e; e e tati fti e. *The Journal of Neuroscience*, 24(13), 3295 3303.
- Sa ai, K., Hi a a, O., Mi a chi, S., Ta i , R., Sa a i, Y., & Pt, B. (1998). Tra iti f brai acti ati france from the france of the second seco
- Shea-B; _{v.}, E., Ri e, J., Ra iti, B.C., & Maaai, C. (2006). A frig; ate de fa; i ia deficit i ite; a ti ig. *Brain Research*, *1070*(1), 189 201.

- Sh e, M.G., & Bea, M.F. (2006). Re, adti i g i the ; i a i. a c; te. . *Science*, *311*(5767), 1606–1609.
- Si e, P., Baci, F., C he, J.D., & H e, P., et a. (2011). A de f i te; a ti i g b e; a i tegati . *Philosophical Transactions of the Royal Society B*, *31*(25), 9238 9253.
- Sj t; , P.J., T.;; igia , G.G., & Ne , S.B. (2001). Rate, ti i g, a d c e ati it j i t dete i e c; tica a tic a ticit. *Neuron*, 32(6), 1149 1164.
- S g, S., Sj t; , P.J., Reig, M., Ne , S., & Ch ii, D.B. (2005). High ; a d feat ; e f a tic c ecti it i ca c ; tica ci c it . *PLoS Biology*, *3*(3), e68.
- Ta e chi, T., D ie, ic, A.J., & M ;; i, R.G. (2014). The atic aticit ad e ; h the i : e c di g, t ; age a d