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Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological
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1. Introduction

The spectral properties of covariance matrices are a central topic in mathematics, probability and
statistics (Mehta, 1991; Anderson, 2003; Hastie et al., 2009; Golub & Loan, 2012) and provide a corner-
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unobtainable. For example, it is easy to show from (1.5) that an expected eigengap should have size

E[s±] = O
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Assumption 2.2 We assume that the joint probability distribution J(s−, s+) of the left and right gaps,
s±
i = |λi − λi±1|, around each eigenvalue λi is given by the following generalized Wigner surmise for

the GOE:

J(s−, s+) ≈ 37
[
pρ(λi)

]5

32π3

[
s+si

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/8/2/289/5047951 by U
niv of C

olorado Libraries user on 05 June 2023



D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/8/2/289/5047951 by U
niv of C

olorado Libraries user on 05 June 2023



ENSEMBLE-BASED ESTIMATES OF EIGENVECTOR ERROR 295

2.3 Main result 2: estimate of the probability density of hi across matrix ensemble

Equation (2.2) gives an asymptotic estimate for hi that uses
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open topic (Murphy et al., 2017; Taylor et al., 2017). In future work, it would be interesting to allow for
graphs with more complicated structure—often called complex networks—and there is a large body of
work exploring spectral densities for these graphs (Farkas et al., 2001; Goh et al., 2001; Chung et al.,
2003; Dorogovtsev et al., 2003; Benaych-Georges & Nadakuditi, 2011; Peixoto, 2013; Zhang et al.,
2014; Taylor et al., 2016
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A. Derivation of main result 1

In this Appendix, we approximate hi in (1.1) in terms of the nearest-neighbour eigenvalue gaps. By doing
so, we will be able to exploit the knowledge of the p → ∞ limiting distribution of the eigenvalues. We
begin by dividing the summation into two parts so that

hi = h−
i + h+

i , (A.1)

with

h−
i =

i−1∑
j=1

λiλj

(λi − λj)
2 , (A.2)

h+
i =

p∑
j=i+1

λiλj

(λi − λj)
2

. (A.3)

Our numerical experiments show that typically the nearest-neighbour terms dominate the others. Taking
this into account, we isolate the first spacing and rewrite h±

i as

h−
i = λiλi−1

(λi − λi−1)
2 +

i−2∑
j=1

λiλj

(λi − λj)
2 , (A.4)

h+
i = λiλi+1

(λi − λi+1)
2 +

p∑
j=i+2

λiλj

(λi − λj)
2 . (A.5)

We study the large p behaviour of (A.4) and (A.5) by separately considering the nearest-neighbour
terms and the summations. In particular, we will obtain approximations that rely only on the right and

https://dx.doi.org/042816
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Using that s±
i → 0 as p → ∞ (which is established by Assumption 2.2 and convergences, in

expectation, with rate s±
i = O(1/p)), we find the asymptotic estimate

λiλi±1

(λi − λi±1)
2 → λ2

i

(s±
i )2

. (A.9)

We now turn our attention to the summations, which we will approximate using the limiting
p → ∞ spectral density ρ(λ) of the normalized empirical counting measure of the eigenvalues. More
precisely, consider a sequence of size-p symmetric covariance matrices, each having eigenvalues {λj} for
j ∈ {1, . . . , p}. We define for each matrix the empirical spectral density

ρp(λ) = p−1
∑
j

δ(λj), (A.10)

where δ(λ) is the Dirac delta function and λ ∈ R. We assume the covariance matrices are drawn from
an ensemble such that the sequence {ρp(λ)} weakly converges, implying that∫ ∞

−∞
ρp(λ)f (λ) dλ →

∫ ∞

−∞
ρ(λ)f (λ) dλ (A.11)

as p → ∞ for any continuous and bounded function f (λ). We assume that ρ(λ) is continuous, is
bounded, has compact support (denoted by supp(ρ)) and is differentiable on supp(ρ). For notational
convenience, we assume supp(ρ) = (α, β) for some α, β ∈ R, allowing us to replace the limits of
integration in (A.11) by (α, β). However, our analysis can be easily extended to unions of such intervals.

We begin be rewriting the summations in (A.4) and (A.5) as the integration of function

fλi
(λ) = λiλ

(λi−λ)2 (A.12)

with probability measure ρp(λ) given by (A.10),

1

p

i−2∑
j=1

λiλj

(λi − λj)
2 =

∫ λi−1

α

ρp(λ)fλi
(λ) dλ, (A.13)

1

p

p∑
j=i+2λ p
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We now study how the right-hand side of (A.15) scales with ε. Using that both ρ(λ) and fλi
(λ) are

differentiable for λ ∈ supp(ρ) \ {λi}, we implement integration by parts, treating the numerator and
denominator separately, to obtain∫ λi−ε

α

fλi
(λ)ρ(λ) dλ = λi

(λi − ε)ρ(λi − ε)

ε
− λi

∫ λi−ε

α

ρ(λ) + λρ′(λ)

λi − λ
dλ. (A.16)

The first term in the right-hand side of (A.16) has the ε → 0 asymptotic estimate

λi
(λi − ε)ρ(λi − ε)

ε
→ λ2

i ρ(λi)

ε
. (A.17)

The second term on the right-hand side of (A.16) is bounded as∣∣∣∣∣λi

∫ λi−ε

α

[
ρ(λ) + λρ′(λ)

]
λi − λ

dλ

∣∣∣∣∣ � λi

[
sup

λ∈(α,λi−ε]
|ρ(λ) + λρ′(λ)|

]∫ λi−ε

α

1

|λi − λ| dλ

= λi

[
sup

λ∈(α,λi−ε]
|ρ(λ) + λρ′(λ)|

]
ln

(
λi − α

ε

)
. (A.18)

It follows that the second term in the right-hand side of (A.16) has scaling O(ln(1/ε)) and is dominated
in the limit ε → 0 by the first term, which is O(1/ε). We combine (A.17) and (A.18) to obtain the
ε → 0 asymptotic estimate ∫ λi−ε

α

fλi
(λ)ρ(λ) dλ → λ2

i ρ(λi)

ε
. (A.19)

We finally note that in the case where ρ′(λ) is unbounded, it is straightforward to separate the
integral on the left-hand side of (A.18) into two domains: one containing all values λ, where ρ′(λ) is
unbounded and the second domain having the upper limit λi − ε. The first integral will converge to zero
due to (A.11); whereas the second satisfies the bound given by (A.18), implying that the integral term
in (A.16) is O(ln(1/ε)), provided that ρ(λ) is differentiable in a small neighbourhood containing λi.

We study the p → ∞ limiting behaviour for the right-hand side of (A.13) by considering the
following identity:∫ λi−1

α

fλi
(λ)ρp(λ) dλ =

∫ λi−s−
i

α

fλi
(λ)ρ(λ) dλ +

∫ λi−s−
i

α

fλi
(λ)

[
ρp(λ) − ρ(λ)

]
dλ
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In summary, we combine (A.21), (A.22) and (A.17
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To obtain an estimate for the distribution of h, fH(h), we differentiate (B.6) with respect to h to obtain

fH(h) = ∂

∂h

∫ ∞

s0(h)

∫ ∞

s∗(h,s+)

J(s−, s+) ds− ds+ (B.7)

= −∂s0

∂h
(h)

∫ ∞

s∗(h,s0(h))
J(s−, s0(h)) ds− +

∫ ∞

s0(h)

∂

∂h

[∫ ∞

s∗(h,s+)

J(s−, s+) ds−
]

ds+

= −
∫ ∞

s0(h)
J
(
s∗(h, s+), s+) ∂s∗(h, s+)

∂h
ds+.

We note that in the above derivation, the first term in the second line vanishes since s∗(h, s+) → ∞ in
the limit s+ → s0(h) and J(s−, s+) is bounded.

C. Derivation of main result 3

With h distributed according to fH(h), given by (B.7), we derive in this section an asymptotic expression
for fH(h) in the limit h → ∞. Examining (2.2), we note that ĥ(s−, s+) is large when s− and/or s+ are
small, and thus in the large h limit one can consider only the contributions of the terms proportional to
s−2− and s−2+ ,

h ≈ λ2

(s−)2 + λ2

(s+)2 . (C.1)

In this case, we find

s0(h) = λ√
h

, (C.2)

s∗(h, s+) = λs+[
(s+)2h − λ2

]1/2 , (C.3)

∂

∂h

(
s∗(h, s+)

) = −λ(s+)3

s+)2

h →2] �

�s
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where we have defined

I
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We now study the h → ∞ scaling for integrals I1(h), I2(h) and I3(h). Beginning with (D.4), we first
note that for the range u ∈ (0, u1(h)](

u + λ2)5/2(
u1/2 + λ

)
�

(
u1 + λ2)5/2(

u1/2
1 + λ

)
. (D.7)

It follows that (
1 + λ2

u

) It follows that (u

/ 2→)
�

(0, 2 ( 342.73 611.556 Tm∑∑{�}5∑{2}0 Tf∑.5/F1∑{+6ollo}2,4{.11∑{+}T7}11∑{+}}
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where the second inequality uses u > 0 and λ2/u > 0 to bound

ϕ(u) = [3pρ(λ)]2

4π

(
u + λ2) [

1 + (
λ2/u

) + (
λ2/u

)1/2
]

� [3pρ(λ)]2

4π
u. (D.17)

We define the change of variables w = [3pρ(λ)]2

4π
u
h to obtain

I3(h) � 8

(
[3pρ(λ)]2

4π

)3/2 ∫ ∞
[3pρ(λ)]2

4π
u2(h)/h

w1/2 e−w dw. (D.18)

From (D.3), the lower limit of integration converges as [3pρ(λ)]2

4π
u2(h)/h → 1 and the integral in (D.18)

converges to a constant as h → ∞. Therefore, I3(h) is also bounded by a term scaling as h3/2.
We will now show that I2(h) has scaling O(h3/2) (as opposed to the other terms, which we showed

are bounded by terms that scale as h3/2). Note that because of our definition of u1 and u2, and using that
ϕ(u) reaches a minimum at u = λ2 ∈ (u1, u2), we find the bounds

ϕ(λ2)/h � ϕ(u)/h � 1 (D.19)

for any u ∈ (u1, u2). Substituting these into (D.6), we bound I2(h) as

Q(h) e−1 � I2(h) � Q(h) e−ϕ(λ2)/h, (D.20)

where we have defined

Q(h) ≡
∫ u2(h)

u1(h)

(
1 + λ2

u

)5/2 (
u1/2 + λ

)
du. (D.21)

Using the asymptotic approximations for u1(h) and u2(h) given by (D.2) and (D.3), we integrate
(D.21) using the software Mathematica (using the ‘Series[Q(h), {h, Infinity,1}]’ command) to obtain
its asymptotic behaviour,

Q(h) ≈ 24π3/2

34[pρ(λ)]3 h3/2. (D.22)

Furthermore, we combine ϕ(λ2)/h → 0 with (D.20) to obtain the asymptotic bound

Q(h) e−1 � I2(h) � Q(h). (D.23)

We combine (D.23) with (D.13) and (D.18) to obtain the large-h scaling I(h) = O
(

h3/2

p3

)
.
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