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1  Introduction

Coherent neural activity patterns respond to and even predict 
sensory stimuli (Ermentrout and Kleinfeld, 2001). The spa-
tiotemporal dynamics that emerge in the context of sensory 
processing can be substantially complex but nevertheless 
reproducible, implying internal features of neural popula-
tions organize activity responses in repeatable ways (Wu 
et al., 2008a). Along these lines, the careful characterization 
of these evoked dynamics across trials can provide insight 
into network structure and its role (Xu et al., 2007). Moreo-
ver, repeatedly evoked coherent patterns of activity can 
reverberate even in the spontaneous dynamics that follow 

stimulus trials (Han et al., 2008). These results suggest that 
the coherent spatiotemporal activity dynamics that emerge in 
sensory cortices following stimulus presentations subserve 
computations determining animals’ future expectations and 
behavior Zanos et al. (2015).

Visual cortical waves are a well studied example of coher-
ent cortical dynamics, which are generated both by electri-
cal and visual stimulation (Wu et al., 2008a). The visual 
system continually converts ongoing and complex input into 
abstract but appropriately detailed representations (Tenen-
baum et al., 2011). These computations serve to not only 
represent position, motion, and shape of objects (Born and 
Bradley, 2005), but also to resolve ambiguities including 
anticipated changes (Knill and Pouget, 2004). As this pro-
cess unfolds over time, new observations are merged with 
previous estimates, potentially inferring object features via 
the spatiotemporal neural activity of corresponding cortical 
networks (Cichy et al., 2014
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environments (Eckert and Zeil, 2001). Flying predators must 
accurately track and predict the movement of prey animals 
along the ground to plan their pursuits and strikes (Kane and 
Zamani, 2014), while flocking and herding animals antici-
pate and rapidly respond to the movements of their neigh-
bors to avoid collisions and stay together (Nagy et al., 2010; 
Torney et al., 2018). Often, conspecifics or objects are only 
intermittently seen by animals, requiring their velocity and 
position estimates to be made during the occlusion peri-
ods (O’Reilly et al., 2008). Such abilities suggest a nor-
mative account of the apparent motion illusion in which 
successive stationary flashes at different locations are per-
ceived as a single moving object hidden from view between 
flashes (Ramachandran and Anstis, 1986). Voltage sensi-
tive dye recordings from awake fixating monkeys observing 
such stimuli reveal an interaction of neural activity waves 
with external inputs suggesting early visual cortical activ-
ity helps represent perception of a moving object and its 
velocity (Chemla et al., 2019). This study also proposed a 
detailed computational model in which a suppressive wave 
of activity is generated by the second of two flashes, either 
explaining away the ambiguity of the first flash as possibly 
another object or representing the two flashes as a single 
moving object.

Here, we analyze a neural field description of the appar-
ent motion illusion that relies on the entrainment of traveling 
activity wave solutions to a sequence of transient and localized 
stimulations. Neural fields model neuronal networks as a con-
tinuous and spatially-extended excitable medium described by 
nonlinear integrodifferential equations allowing for direct anal-
ysis using methods adapted from nonlinear partial differential 
equations, such as reaction diffusion models (Bressloff, 2011). 
Such a framework is ideal as it affords analytical treatments 
of the local network mechanisms underlying emergent spa-
tiotemporal patterned activity (Huang et al., 2004; Goulet & 
Ermentrout, 2011) and stimulus-behavior relationships com-
monly recorded in cognitive tasks (Bressloff & Webber, 2012; 
Kilpatrick, 2018; Erlhagen & Schöner, 2002). Traveling wave 
solutions can be identified explicitly in many instances (Pinto 
& Ermentrout, 2001; Coombes, 2005), as can their response 
to non-trivial stimuli (Folias & Bressloff, 2005; Ermentrout 
et al., 2010; Si, 1977). Our model incorporates a physiologi-
cally realistic form of negative feedback as short term synaptic 
depression, leading to an attenuation at the back of waves, pro-
ducing traveling pulses (Kilpatrick & Bressloff, 2010c). We 
will solve for traveling waves and identify their response to 
flashing stimuli, interpreting the resulting dynamics as a stimu-
lus motion percept. Such an approach allows for explicit and 
dynamical characterization of the conditions required to pro-
mote the apparent motion illusion across a range of potential 
stimulus types.

Our perturbative approach to studying how traveling waves 
respond to transient or weak stimuli specifically estimates how 

a wave’s position changes in response to inputs. Linear asymp-
totics and even weakly nonlinear analysis have been used previ-
ously to understand how perturbations in synaptic connectivity, 
input, or model parameters shape waves and patterns in neu-
ral field equations (Bressloff et al., 2003; Venkov et al., 2007; 
Bressloff, 2001; Coombes, 2005; Amari, 1977). Perturbative 
theories describing how waves transform inputs and synap-
tic weight heterogeneities into changes in position and speed 
have been used as a model of idiothetic position (i.e., where an 
animal is or what direction they are heading) (Zhang, 1996; 
Xie et al., 2002; Burak & Fiete, 2009). Weak inputs alter the 
dynamics enough to displace wave positions without substan-
tially disrupting their shape, allowing for an accurate linear 
input-response theory (Kilpatrick & Ermentrout, 2012). Since 
our model incorporates nonlinear negative feedback, care must 
be taken in performing the asymptotic calculations to character-
ize the response to inputs (Kilpatrick & Bressloff, 2010d). In 
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& Webber, 2012). We will move beyond these prior studies 
to consider the effects of transient and persistent inputs upon 
waves in networks subject to synaptic depression, and con-
sider how such a model can represent visual motion encoding. 
Specifically, we consider the following integro-differential 
equation system: 

 
Here, u(x,  t) and q(x,  t) denote the average normal-





		

continuity and appropriate boundary conditions depending on 
the direction ( sign(c) ) of travel. Before analyzing the case of 
moving fronts ( c ≠ 0 ), we examine the degenerate case of a 
standing wave solution with speed c = 0 . In this case, Eq. (3b) 
reduces to a stationary equation, we have � ≡ x , and the profile 
of synaptic efficacy is given by

Substituting into Eq. (3a), we see

so for a normalized ( ∫
ℝ

w(x)dx = 1 ) and even ( w(−x) = w(x) ) 
weight function, we have � = U(0) =

�

2
 , implying standing 

fronts only arise for a specific choice of the depression rate 
� =

1

2�
− 1 which perfectly balances the tendency of the 

active region to invade inactive regions with the rate of 
activity decay (Ermentrout and McLeod, 1993).

For forward moving fronts ( c > 0 ), we solve Eq.  (3b) 
with the boundary conditions lim�
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The self-consistency inequality ensuring the active region 
remains superthreshold then requires lim

𝜉→−∞
U(𝜉) = 𝛾 > 𝜃 or 

1∕(1 + 𝛽) > 𝜃 implying � < (1 − �)∕� . Decreasing � below 
� truncates the wave speed branches due to a global bifurca-
tion resulting from the inability of the active region to self-
sustain. Profiles are plotted in Fig. 1C, D.

On the other hand, if we assume c < 0 (retreating fronts), 
we can similarly find solutions for which the quiescent 
region invades the active region. We again solve Eq. (3b), 
with the same boundary conditions, but now having c < 0 
implies

Again we substitute into Eq. (3a), enforce boundedness 
and the threshold condition U(0) = � . After integrating, we 
find a condition determining the speed of the front

and a formula for the activity variable of form

Speeds are plotted in Fig.  1A, B and example pro-
file in Fig. 1E. Such fronts exist for sufficiently strong 
depression as bounded by the standing front condi-
tion 𝛽 > (1 − 2𝜃)∕(2𝜃) or 𝛾 < 2𝜃 , but not too strong 
( 𝛽 < (1 − 𝜃)∕𝜃 or 𝛾 > 𝜃 ). The speed formula above, corre-
sponding to the red curve in Fig. 1A, shows that as � → �+ 
the front speed c → −∞ , resulting in an infinitely rapidly 
retreating front corresponding to a quiescent state U ≡ 0 . 
Retreating fronts can thus be annihilated by excessively 
strong synaptic depression. On the other hand, as � → 2�− , 
the speed c of retreat of the front decreases to zero, leading 
the stable branch of regressive fronts to join the unstable 
branch of advancing fronts in a saddle-node bifurcation.

The analysis presented in Fig. 1 builds on that of Kilpat-
rick and Bressloff (2010b) by examining the covariation of 
frontspeeds and bifurcations with the strength and timescale 
of adaptation, especially identifying the important role of 
regressive fronts in the bifurcation picture. Since spike rate 
adaptation is not included the model presented here, we ha 1 Tf
33ffiTd
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piecewise linear equation. Enforcing the boundary condi-
tions lim

�→±∞
Q(�) = 1 , we obtain the solution

Substituting back into Eq. (6b), we find

which can be solved piecewise up to free constants that 
can be identified by enforcing continuity, boundedness, 
and boundary conditions. Notice in the limit 
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of different speeds. To derive an approximate equation for the 
time-dependent evolution of the wave position �� (t) relative to 
the coordinate frame � = x − ct
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This analysis would be easy to repeat for a retreating front. 
Based on our observations here, we expect that global stimuli 
would cause the front to push outward, so positive stimuli 
delay rather than advance the position of the front relative to 
the wave coordinate frame.

Taking the limit of no synaptic depression � → 1− , we see 
we recover

which was derived previously in Kilpatrick and Ermentrout 
(2012). Note well that because we are not considering per-
sistent stimuli here, the dependence upon � on the right-
hand-side of Eq. (13) does not come into effect and so it 
is straightforward to solve the equation by integration. As 
noted, spatially global stimuli perturb waves in ways that are 
not always well captured by linear theory, but more spatially 
localized stimuli have a more modest effect on wave posi-
tion, which can also be captured well by our linear theory 
as we now show.

4.3 � Pulse wave response

Traveling front solutions are unaffected by activity ( Iu ) per-
turbations behind their leading edge ( 𝜉 < 0 ) as demonstrated 
above. On the other hand, traveling pulses have both a front 
and back which can be perturbed by weak inputs. Moreover, 
spatially localized inputs that may model the position of a 
visual object interact with wave position in ways that depend 
on their width as well as strength. To better understand the 
dynamics of such interactions as a means of building a theory 
of visual object tracking, we begin by deriving the nullspace 
of the adjoint operator in the case of a traveling pulse. Taking 
a Heaviside nonlinearity in Eq. (12) we find 

 where again the right-hand-side of Eq.  (16a) is singu-
larized due to the derivative of the step nonlinearities 
f (U(�) − �) = H(� + Δ) − H(�) such that

lim
�→1−

�(t) =
c + 1

�
H(t − t0) =

H(t − t0)

2�2
,

(16a)

c
dv

d�
+ v =�(�)

Q(0)

|U�(0)| ⋅
[
∫
ℝ

w(y)v(y)dy − �p(0)

]

+ �(� + Δ)
Q(−Δ)

|U�(−Δ)| ⋅
[
∫
ℝ

w(y + Δ)v(y)dy − �p(−Δ)

]
,

(16b)

c�q
dp

d�
+ p = [H(� + Δ) − H(�)] ⋅

[
∫
ℝ

w(� − y)v(y)dy − �p(�)

]
,

�(� + Δ) − �(�) =
d

d�
[H(� + Δ) − H(�)]

=
d

d�
H(U(�) − �) = H�(U(�) − �)U�(�).

Eq. (16a) has the form cv�(�) + v(�) = A�(�) + B�(� + Δ) suggesting the 
following ansatz v(�) = 1

c
[A0H(�)e−�∕c + A−ΔH(� + Δ)e−(�+Δ)∕c . whose coef-

ficients satis7.28997868 0 T0 0 40 0  0 10 496.155303955 713oGS127231.fim 
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Ignoring the trivial solution A0 = A−Δ = 0 and fixing the 
first entry A0 = 1 , we may solve this singular equation by 
satisfying the second equation to find

so by defining A−Δ as in Eq. (20) and A0 = 1 , we find the 
one-dimensional nullspace of L∗ is spanned by (v(�), p(�))T 
where 

To study the impact of spatially locaized and temporally 
pulsatile stimuli on traveling pulses, we again use Eq. (13) to 
formulate an approximation to the phase advance of the pulse 
from an abrupt input at a single point in time,

Integrating against both perturbations of the neural activ-
ity of amplitude Īu and synaptic efficacy of amplitude Īq vari-
ables, we adjust the position x0 of the stimulus relative to the 
pulse and see the approximation agrees well with numerical 
simulations (Fig. 4
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that move at a fixed natural wavespeed. A wave’s leading edge 
is interpreted as the visually encoded position of a moving 
object. When objects move at speeds other than the natural 
wavespeed, external stimulation must be able to shift the phase 
and/or increase the speed of the wave to appropriately encode 
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Consider the effect the input has upon the front at dif-
ferent displacements. When the front of the stimulus is 
ahead of the front’s leading edge, but the active region of 
Eq. (26) still contains the front ( Δct ∈ [0,Δx] ), only the 
part of the stimulus ahead of the front will be filtered by 
the adjoint nullspace, the same as before. Thus, only the 
portion of the stimulus ahead of or containing the leading 
edge of the front has any effect on the location of the lead-
ing edge of the pulse. Either a fixed point is reached, or the 
lag becomes larger than the width of the square stimulus 
and the impact of the stimulus on the front weakens fur-
ther. We expect the front will then lose the opportunity to 
entrain to the stimulus at this point, implying entrainment 
generally must occur before the entire stimulus slips ahead 
of the leading edge. When solving for the corresponding 
fixed point of Eq. (24), this generates the stricter entrain-
ment condition

Stability of the fixed point described by Eq. (25) can be 
determined in the same way as before showing it is stable.

Boundaries on entrainment for traveling pulses are 
determined similarly, except that the activity nullspace 
term has the form 
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The denominator of the argument in the logarithm above 
is positive, and the solution is defined if Δc < 𝜀

Ton

T

c

K
 . Line-

arizing the map Eq.  (29) and plugging in the solution 
Eq. (30), we find its stability is determined by the single 
eigenvalue � = exp

[
ΔcT

c
−

�Ton

K

]
 , so � ∈ (0, 1) if Δc < 𝜀

Ton

T

c

K
 , 

which implies that the fixed point defining periodic entrain-
ment is stable whenever it exists.

Our theory is consistent with the result of numerical 
simulations of the response of traveling waves to periodic, 
moving, and flashing stimuli. Flashing stimuli that are suf-
ficiently strong and that travel at a speed that is not too much 
faster than the natural wavespeed will entrain the traveling 
wave (Fig. 6A). Tracking the leading edges of these flash-
forced traveling pulses reveals that the stimulus speeds up 
the wave while it is on, and the pulse speed relaxes to its nat-
ural value between flashes. Over time, the average speed of 
the forced solution matches that of the average speed c + Δc 
of the forcing stimulus. On the other hand, if (a) the distance 
traveled with each hop between flashes is too large or (b) the 
stimulus is too weak or short, then the pulse will not be sped 
up enough during the on phase of the period. As a result, 
the pulse will eventually lag further and further behind the 
forcing stimulus as time goes on (Fig. 6B). The combined 
necessity of having a forcing stimulus whose speed differ-
ence is not too large ( Δc ), whose magnitude is not too weak 
( � ), or whose on phase is not too short ( Ton ) is all contained 
in the entrainment boundary inequality Δc < 𝜀

Ton

T

c

K
 . Indeed, 

(30)y∗ = Δx − c log

[
�

K + �
⋅

eTon − e−�Ton∕K

e−ΔcT∕c − e−�Ton∕K

]
.

we see that this boundary well approximates the boundary 
we can determine from numerical simulations (Fig. 6C).

Thus we find that the entrainment of neural activity waves 
in a model of sensory cortex can be described by a rela-
tively accessible theory. Akin to results from past work on 
phase response theory, we find that stimuli whose speed is 
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The planar version of Eq. (1) involves convolving the 
integral over ℝ2 , requiring radially symmetric weights 
w(x − y) = w(r)
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direction (Pang et al., 2020) of waves. These response prop-
erties reflect a highly dynamic and spatiotemporal form of 
input processing in sensory cortices (Ermentrout & Klein-
feld, 2001; Muller et al., 2018). Disentangling the role of 
synaptic network architecture in spatiotemporal processing 
thus requires the analysis of dynamic and mechanistic neural 
network models that capture cortical complexity while still 
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fully capture the diversity of static and dynamic models of 
synaptic transmission and understand how these contribute 
to the filtering properties of traveling waves. Similar analyses 
could also be applied to planar neural field models, building 

https://github.com/shawsa/neural-field-synaptic-depression
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