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albeit at the expense of accuracy and the representation of higher-order
statistics. Nonetheless, when measurement noise is not too large, these ap-
proximations can be used to estimate the most likely transition rate and
the current state of the environment. This motivates a physiologically plau-
sible neural implementation for the present computation. We show that
a Hebbian learning rule that shapes interactions between multiple neural
populations representing the different choices allows a network to inte-
grate inputs nearly optimally. Our work therefore links statistical principles
for optimal inference with stochastic neural rate models that can adapt to
the environmental volatility to make near-optimal decisions in a changing
environment.

2 Optimal Evidence Accumulation for Known Transition Rates

We start by revisiting the problem of inferring the current state of the envi-
ronment from a sequence of noisy observations. We assume that the number
of states is finite and the state of the environment changes at times unknown
to the observer. We first review the case when the rate of these changes is
known to the observer. In later sections, we assume that these rates must
also be learned. Following Veliz-Cuba et al. (2016), we derived a recursive
equation for the likelihoods of the different states and an approximating
stochastic differential equation (SDE). Similar derivations were presented
for decisions between two choices by Deneve (2008) and Glaze et al. (2015).

An ideal observer decides between N choices, based on successive ob-
servations at times tn (n = 1, 2, . . .). We denote each possible choice by
Hi, (i = 1, . . . ,N), with Hn being the correct choice at time tn. The transi-
tion rates εi j, i �= j, correspond to the known probabilities that the state
changes between two observations: εi j = P

(
Hn = Hi|Hn−1 = H j

)
. The ob-

server makes measurements, ξn, at times tn with known conditional proba-
bility densities f i(ξ ) = P

(
ξn = ξ |Hn
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Thus, the transition rates, εi j, provide the weights of the previous probabili-
ties in the update equation. Unless transition rates are large or observations
very noisy, the probability Pn(Hn = Hı̂) grows and can be used to identify
the present environmental state. However, with positive transition rates, the
posterior probabilities tend to saturate at a value below unity. Strong ob-
servational evidence that contradicts an observer’s current belief can cause
the observer to change belief subsequently. Such contradictory evidence
typically arrives after a change in the environment.

Following Veliz-Cuba et al. (2016), we take logarithms, xi
n := ln Pn(Hn =

Hi) and denote by �xi
n := xi

n − xi
n−1 the change in log probability due to an

observation at time tn. Finally, we assume the time between observations
�t := tn − tn−1 is small, and ε

i j
�t = �tεi j + o(�t) for i �= j, so that dropping

higher-order terms yields

�xi
n = ln f i

�t (ξn)+ ln

⎛⎝1 −
∑
j �=i

�tε ji +
∑
j �=i

�tεi jex j
n−1−xi

n−1

⎞⎠, i = 1, . . . ,N,

where the likelihood function f i
�t (ξ ) may vary with �t. Next, we use the

approximation ln(1 + z) ≈ z for |z| � 1 and replace the index n by time, t,
to write

�xi
t ≈ �tgi

t,�t +
√
�tWi

�t +�t
∑
j �=i

(
εi jex j

t −xi
t − ε ji), i = 1, . . . ,N,

where the drift gi
t = 1

�t Eξ

[
ln f i

�t (ξ )|Ht

]
is the expectation of ln f i

�t (ξ )

over ξ , conditioned on the true state of the environment at time t,
Ht ∈ {H1, . . . ,HN}, and W�t = (W1

�t, . . . ,W
N
�t ) follows a multivariate gaus-

sian distribution with mean zero and covariance matrix ��t given by

�
i j
�t =

1
�t

Covξ

[
ln f i

�t (ξ ), ln f j
�t

t�
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The nonlinear term in equation 2.2 implies that in the absence of noise,
the system has a stable fixed point and older evidence is discounted. Such
continuum models of evidence accumulation are useful because they are
amenable to the methods of stochastic analysis (Bogacz et al., 2006). Lin-
earization of the SDE provides insights into the system’s local dynamics
(Glaze et al., 2015; Veliz-Cuba et al., 2016) and can be used to implement the
inference process in model neural networks (Bogacz et al., 2006; Veliz-Cuba
et al., 2016).

We next extend this approach to the case when the observer infers the
transition rates, εi j, from measurements.

3 Environments with Symmetric Transition Rates

We first derive the ideal observer model when the unknown transition rates
are symmetric, εi j ≡ constant when j �= i, and εii := 1 − (N − 1)εi j. This
simplifies the derivation, since the observer only needs to estimate a single
change-point count. The asymmetric case discussed in section 4 follows
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Figure 1: Online inference of the change rate in a dynamic environment. (A) The
environment alternates between states H+ and H− with transition probabilities
ε+, ε−. We analyze the symmetric case (ε := ε±) in section 3.1 and the asym-
metric case (ε+ �= ε−)
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The process {an}n≥1 is a pure birth process with birth rate ε. The observer
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Figure 2: Inference of the states, H±, and change rate, ε. (A) The joint posterior
probability, Pn(H

±, a), is propagated along a directed graph according to equa-
tion 3.14. Only paths corresponding to the initial condition (H1, a1) = (H+, 0)
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and

Pn(H
±,n−1)= P(ξ1:n
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estimate the length of the interval since the last change point. We demon-
strate the inference process defined by equation 3.14 in Figure 2.

The observer can compute the posterior odds ratio by marginalizing over
the change-point count:

Rn := Pn

(
H+)

Pn (H−)
=
∑n−1

a=0 Pn

(
H+, a

)∑n−1
a=0 Pn (H−, a)

. (3.15)

Here log(Rn) = Ln > 0 implies that Hn = H+ is more likely than Hn = H−

(see Figure 2B). Note that P(ξ1:n−1)/P(ξ1:n)
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Figure 3: The performance of the inference algorithm. (A) Performance under
the interrogation paradigm measured as the percentage of correct responses
at the interrogation time. Here and in the next panel, ε = 0.05, and SNR= 1.
The black curve represents the performance of an ideal observer who infers the
change rate from measurements. The green curves represent the performance
of observers who assume a fixed change rate (0.3, 0.15, 0.05, 0.03 from darker
to lighter; see equation 2.1). The solid green line corresponds to an observer
who assumes the true rate and the dashed lines to erroneous rates. (B) The
green curve represents the performance at interrogation time t300 of an observer
who assumes a fixed change rate. The red star marks the maximum of this
curve, corresponding to the true change rate ε = 0.05. The horizontal black
curves represent the performance at times t40, t100, t200, t300 (from bottom to top)
of the observer who learns the change rate. (C) The accuracy as a function of
the average threshold hitting time in the free response protocol. Here ε = 0.1,
and SNR = 0.75. See section A.2 for details on numerical simulations. See also
Figure 3 in Veliz-Cuba et al. (2016).

time. Hence, the observer does not know exactly how to weight previous
observations to make an inference about the current state. As a result,
the probability of misclassifying the current state may not be known. We
conjecture that this implies that even in the limit n → ∞, the posterior over
ε



1574 A. Radillo, A. Veliz-Cuba, K. Josić, and Z. Kilpatrick
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The observer can also compute the posterior probability Pn(ε) of the transi-
tion rate ε by marginalizing over all states Hn and change-point counts an,

as in equation 3.16. Furthermore, a point estimate of ε is given by the mean
of the posterior after marginalizing, as in equation 3.17.

4 Environments with Asymmetric Transition Rates



Evidence Accumulation and Change Rate Inference 1577

has to assign a probability of each of these states, which is much more
demanding than in the symmetric rate case where the number of possible
states grows linearly in n.

We next derive an iterative equation for Pn(Hn,an), the joint probability
of the state Hn, and an allowable combination of the N(N − 1) change-point
counts (off-diagonal terms of an) and N non-change-point counts (diagonal
terms of an). The derivation is similar to the symmetric case. For n > 1, we
first marginalize over Hn−1 and an−1,

Pn(Hn,an)

= 1
P(ξ1:n)

∑
Hn−1,an−1

P(ξ1:n|Hn,Hn−1,an,an−1)P
(
Hn,Hn−1,an,an−1

)
,

where the sum is over all Hn−1 ∈ {H1, . . . ,HN} and possible values of the
change-point matrix, an−1.

Using P
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Let δi j be the N × N matrix containing a 1 as its i jth entry, and 0 every-
where else. For all i, j ∈ {1, . . . ,N} we have

P(Hn = Hi,an|ε,Hn−1 = H j,an
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Therefore, for n > 1, the probability update equation in the case of asym-
metric transition rates, equation 4.1, is given by

Pn(Hn = Hi,an)

= P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

N∑
j=1

ε̂
i j
n−1(an − δi j)Pn−1

(
Hn−1 = H j,an − δi j) . (4.6)

The point estimates of the transition rates, ε̂i j
n−1(an−1 = an − δi j), are de-

fined in equation 3.5. As before, P1(H
i,a1 = 0) = f i(ξ1)P0(H

i)/P(ξ1) and
P1(H

i,a1) = 0 for any a1 �= 0. At future times, it is only possible to obtain
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Equation 4.6 is easier to interpret when N = 2. Using equation 4.5, we
find

ε̂21
n−1(an−1) =

a21
n−1 + 1

2 + a21
n−1 + a11

n−1

, ε̂12
n−1(an−1) =

a12
n−1 + 1

2 + a12
n−1 + a22

n−1

,

and we can express ε̂11
n−1(an−1) = 1 − ε̂21

n−1(an−1) and ε̂22
n−1(an−1) = 1 −

ε̂12
n−1(an−1). Expanding the sum in equation 4.6, we have

Pn

(
H1,an

)= P(ξ1:n−1)

P(ξ1:n)
f 1(ξn)

[
ε̂11

n−1(an − δ11)Pn−1

(
H1,an − δ11)

+ ε̂12
n−1(an − δ12)Pn−1

(
H2,an − δ12)] , (4.8a)

Pn

(
H2,an

)= P(ξ1:n−1)

P(ξ1:n)
f 2(ξn)

[
ε̂22

n−1(an − δ22)Pn−1

(
H2,an − δ22)

+ ε̂21
n−1(an − δ21)Pn−1

(
H1,an
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Figure 5: Schematic showing the reduction of the full inference model, equa-
tion 5.7, for a two-state (H±) symmetric environment (ε = ε±) carried out in
sections 5 and 6. (A) Observations ξt arrive continuously in time and are used to
update the probabilities P±

t (a) that the environment is in state H± after a change
points. (B) Red and pink arrows from panels A to B represent, respectively, the
summation and averaging of P±

t (a) over a to obtain equation 5.1b for the zeroth
P̄±

t and first Ā±
t moments in section 5.2. Arrows from P−

t (a) have been omitted
for clarity. (C) Moment equations are converted to a neural population model,
equation 6.7, by assigning the probabilities to population variables, P̄±

t �→ u±
t
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We can substitute equation 5.1 into equation 3.7 describing the probabil-
ity of transitions between time tn−1
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Finally, note that we can obtain evolution equations for the likelihoods,
P±

t (a) = P(Ht = H±, a), by applying the change of variables P±
t (a) = ex±t (a).

Itô’s change of coordinates rules (Gardiner, 2004) implies that equation 5.6
is equivalent to

dP±
t (a)=P±

t (a)
[(

g±t + 1
2

)
dt + dW±

t

]
+
[

a + α − 1
t + β

P∓
t (a − 1)− a + α

t + β
P±

t (a)
]

dt, (5.7)

where now initial conditions at t = 0 are simply P±
0 (a) = P0(H

±, a) =
P0(H

±)P0(a)
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matrix a, where we replace the non-change-point counts with dwell times
t j, defined as a j j

t = t j := a j j
�t�t for�t = tn − tn−1. This is necessary due to the

divergence of aii
�t as �t → 0. In the limit �t → 0, the modified change-point

matrix becomes

At =
(

t1 a21

a12 t2

)
,

where ai j
t ∈ Z

∗ is the change-point count from H j �→ Hi, while ti ∈ R≥0 is
the dwell time in state Hi. Thus, taking logarithms, linearizing, and tak-
ing the limit �t → 0, we obtain the following system of stochastic partial
differential equations (SPDEs) for the log likelihoods, x j

t (A) = ln Pn(H
±,A):

dx1
t (At )= g1

t dt + dW1
t

+
(

a12
t + α2 − 1

t2 + β2
ex2

t (At−δ12 )−x1
t (At ) − a21

t + α1

t1 + β1
− ∂x1

t

∂t1

)
dt, (5.9a)

dx2
t (At )= g2

t dt + dW2
t

+
(

a21
t + α1 − 1

t1 + β1
ex1

t (At−δ21 )−x2
t (At ) − a12

t + α2

t2 + β2
− ∂x2

t

∂t2

)
dt, (5.9b)

where the drift, gi
t, and noise, Wi

t , are defined as before (for details, see
section A.3). Note that the flux terms,

∂xi
t

∂ti , account for the flow of probability
to longer dwell times ti. For example, the SPDE for x1

t has a flux term for the
linear increase of the dwell time t1 since this represents the environment

1

H
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the change of variables Pi
t (At ) = exi

t (At ), we find

dP1
t (At )=P1

t (At )

[(
g1

t +
1
2

)
dt + dW1

t

]

+
[

a12
t + α2 − 1

t2 + β2
P2

t (At − δ12)− a21
t + α1

t1 + β1
P1

t (At )−
∂P1

t (At )

∂t1

]
dt,

(5.11a)

dP2
t (At )=P2

t (At )

[(
g2

t +
1
2

)
dt + dW2

t

]

+
[

a21
t + α1 − 1

t1 + β1
P1

t (At − δ21)− a12
t + α2

t2 + β2
P2

t (At )−
∂P2

t (At )

∂t2

]
dt,

(5.11b)

where now initial conditions at t = 0 are Pi
0(At ) = P0(H

i)P0(At ).

5.1.3 Multiple States with Symmetric Rates. The continuum limit in the
case of N states, {H1, . . . ,HN}, with symmetric transition rates can be ded8BT
0 TL
/F3 1 Tf
9.4645 0 0 9.4645 93.28561 338.87157 Tm
[W1746J
E39 T22 3w in the
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We begin by summing equation 5.7 over all
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Figure 6: The dynamics of the first two moments as approximated by equa-
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We briefly analyze the model, equation 6.1, by considering the limit of
no observation noise. That is, we assume g±
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Figure 7: Neural network model with plasticity, inferring the current state Ht
and rates ε± of environmental change. (A) Schematic showing the synaptic
weight w± from neural population u± �→ u∓ evolving through long-term poten-
tiation (LTP) and long-term depression (LTD) to match the environment’s rate
of change, ε± := ε. (B) When the neural populations exchange dominance, their
activity levels u± are both transiently high. As a result, both synaptic weights,
w±, increase via LTP. When only one population is active, both weights decay
via LTD, as described by equation 6.7b. (C) Inference of the rate, ε, via long-
term plasticity of the weights for ε = 0.01, 0.05, 0.1. Though the signal-to-noise
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our model the rate variables, u±
t , represent the probability that the envi-

ronment is in state H±. This particular form of the population model leads
dynamical equations that are consistent with an accepted rate-correlation-
based plasticity rule (Miller, 1994; Pfister & Gerstner, 2006). Using log prob-
abilities would lead to models that contain exponential functions of the rate
(Veliz-Cuba et al., 2016), which are less common. In addition, since probabil-
ities can assume a finite range of values, we required that u±

t ∈ [0, 1]. Using
log probabilities would require that we use a semi-infinite range, (−∞, 0]
or that we truncate. Note also that the inputs I±t and noise dW±

t are gain-
modulated using the population rates u±

t . Gain-modulating circuits have
been identified in many sensory areas (Salinas & Abbott, 1996), and recent
studies suggest evidence-accumulating circuits may also modulate input
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modifying equation 6.2 for the plasticity agent, so that each C±
t decays only

when the neural population of origin, u±
t , is active. Thus, we obtain the pair

of equations

dC±
t = −H(u±

t − θ )
[
C±

t

]2
.

Expressing equation 6.8 as a system of equations for the synaptic weights,
w±

t , yields

dw±
t = H(u±

t−τ − θ )
[
δ(u+

t − u−
t )− w±

t

] ·C±
t dt. (6.9)

Here the function H(u±(t − τ )− θ ) for θ ≥ 0.
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changes in time. We assumed that the rates of transition between envi-
ronmental states are initially unknown to the observer. An ideal observer
must therefore integrate information from measurements to concurrently
estimate both the transition rates and the current state of the environment.
Importantly, these two inference processes are coupled: knowledge of the
rate allows the observer to appropriately discount older information to infer
the current state, while knowledge of transitions between states is necessary
to infer the rate.

Inference when all transition rates are identical is straightforward to
implement in resulting models. An ideal observer only needs to track the
probability of the environmental state and the total change-point count re-
gardless of the states between which the change occurred. However, when
the transition rates are asymmetric, the resulting models are more com-
plex. In this case, an ideal observer must estimate a matrix of change-point
counts, distinguished by the starting and ending states. The number of
possible matrices grows polynomially with the number of observations.
This computation is difficult to implement, and we do not suggest that
animals make inferences about environmental variability in this way. How-
ever, understanding the ideal inference process allowed us to identify its
most important features. In turn, we derived tractable approximations and
plausible neural implementations, whose performance compared well with
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strategies to learn or something close to the normative models we derived
here.
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to a threshold value θ over 100,000 simulations. For each value of θ , the sim-
ulation is terminated when |Ln| > θ and the choice is given by the sign of Ln.
To avoid excessively long simulations, we removed any that lasted longer
than n =
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P(Hn, an|Hn−1, an−1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 −�t
an + α

tn−1 + β
, & : Hn = Hn−1 & an = an−1

�t
an + α − 1

(
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Furthermore, note that in the limit t → ∞, the O(1) terms and O(t−1) terms
vanish in equation 5.16:

dP
±
t =P

±
t

[(
g±t + 1

2

)
dt + dW±

]
+ [

Ā∓
t − Ā±

t

]
dt (A.4a)

dĀ±
t = Ā±

t

[(
g±t + 1

2

)
dt + dW±

]
+ (

Ā∓
t − Ā±

t

) (
Ā∓

t + Ā±
t

)
dt. (A.4b)

Therefore, in the event that Ā±
t → εP̄±

t in the long time limit (t → ∞), we
find the truncated system, equation A.4, becomes

dP̄±
t = P̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε · [P̄∓

t − P̄±
t

]
dt (A.5a)

εdP̄±
t = εP̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε2 · (P̄∓

t − P̄±
t

) (
P̄∓

t + P̄±
t

)
dt.

(A.5b)

Dividing by ε and noting that P̄+
t + P̄−

t = 1, equation A.5 becomes

dP̄±
t = P̄±

t

[(
g±t + 1

2

)
dt + dW±

]
+ ε · [P̄∓

t − P̄±
t

]
dt
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rules (Gardiner, 2004) imply our population model is equivalent to

dx±t = I±
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