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Abstract. We analyze velocity-jump process models of persistent search for 
a single target on a bounded domain. The searcher proceeds along ballistic 
trajectories and is absorbed upon collision with the target boundary. When 
reaching the domain boundary, the searcher chooses a random direction for 
its new trajectory. For circular domains and targets, we can approximate the 
mean first passage time (MFPT) using a Markov chain approximation of the 
search process. Our analysis and numerical simulations reveal that the time 
to find the target decreases for targets closer to the domain boundary. When 
there is a small probability of direction-switching within the domain, we find 
the time to find the target decreases slightly with the turning probability. We 
also extend our exit time analysis to the case of partitioned domains, where 
there is a single target within one of multiple disjoint subdomains. Given an 

average time of transition between domains T⟨ ⟩, we find that the optimal rate 

of transition that minimizes the time to find the target obeys T1min / ⟨ ⟩β ∝ .
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1. Introduction

Organisms frequently search to find targets whose position is unknown to them. For 
example, animals search for food or mates in ways that balance both speed and low 
energy expenditure [1–3]. In addition, the dynamics of biomolecules can be modeled as 
a search process. Recently, experiments and modeling studies have identified biochemi-
cal processes whose kinetics involve the search for a reaction partner, due to the small 
number of reactive molecules [4–6]. Regardless of the context of searches, it is often 
desirable to minimize the amount of time needed to find the target, and this is the most 
common measure of search eciency [7].

There are two particularly well studied models of random search processes: passive 
diusion and intermittent search. Passive diusion to a small target in a confined domain 
is a common model of molecular transport at the biomolecular scale [8, 9]. A distinct 
advantage of this framework is that the average time to find the target can be form-
ulated as the solution to a mean first passage time (MFPT) problem [10–12]. However, 
this model is not appropriate in all situations. In particular, foraging organisms and bio-
molecules that move ballistically often employ an intermittent search strategy, wherein 
diusive search periods are punctuated by rapid displacement phases during which no 
search occurs [13]. Such intermittent strategies can be optimized to obtain a minimal 
MFPT by balancing time spent in the moving and searching phases [14].

In contrast to such previous work, one could also consider strategies wherein search 
is persistent and ballistic. The searcher then proceeds according to a velocity-jump 
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process, moving ballistically and then switching direction at random times [15, 16]. The 
diusion limits of velocity-jump processes are described by linear transport systems, 
specific cases of the Boltzmann equation [17, 18]. Recently, this model has been used 
to analyze the statistics of foraging insect movement [19, 20]. Presuming an animal 
can detect targets while moving ballistically [21], search and travel can be modeled as 
a single process. One well studied experimental paradigm wherein an animal searches 
persistently is the Morris water navigation task, in which a rodent must locate a plat-
form in a circular pool [22]. Visual search in psychophysics tasks is another example 
of persistent search, where the focal point of gaze moves ballistically in search of a 
visual target [23, 24]. Thus, concrete quantitative models are needed to understand the 
dynamics of persistent search and identify optimal strategies.

We analyze an idealized model of persistent search, which considers movements of 
the searcher to be ballistic trajectories with constant speed. For simplicity, we consider 
two-dimensional circular domains with reflecting boundaries along with circular targets 
with absorbing boundaries. Initially, we develop an asymptotic theory for approxi-
mating the time to find the target when the searcher only turns when encountering 
the domain boundary. This allows us to understand how the placement of the target 
impacts the average time to locate it. We extend our analysis to the case where the 
searcher turns on the domain interior with finite probability, showing this decreases the 
MFPT for low-probability of turning. Lastly, we introduce a model of persistent search 
on multiple disjoint domains. When the transit time between subdomains is nonzero, 
there is an optimal rate of transition between domains that balances domain cover-
age with the time penalty for traveling between domains. In all cases, we identify how 
search and domain parameters impact the MFPT.

2. Velocity-jump process model of persistent search

Consider the following model for the stochastically evolving position tx( ) of a persistent 
searcher. We construct a model of a particle searching for a hidden target in a bounded, 

circular domain Ω of radius R, i.e. { }( ) ⩽Ω = ∈ +Rx y x y R: , :2 2 2 . The hidden target 

is also defined by a circular region with radius r:

{ }( ) ( ) ( ) ⩽Ω = ∈ Ω − + −x y x x y y r: , : ,T 0
2

0
2

where x y,0 0( ) denotes the centroid of the target domain. Note, we will restrict 

x y R r0
2

0
2 ⩽+ − , so the entire target is contained in the domain Ω. Furthermore, due 

to the rotation symmetry of the circular domain, we exclusively consider targets with 
coordinates along the right horizontal radius, x y R, , 00 0( ) ( )= ε . All other cases can be 
reduced to this form by an axial rotation.

The searcher’s position evolves according to a velocity-jump process [15]. On 
the interior of the domain tx( ) \∈ Ω ∂Ω, the searcher moves ballistically with velocity 

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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that as →λ
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along straight trajectories, unless it encounters the target domain ΩT. For a trajectory 
from the domain location θ to θ′, there is probability a ,( )θ θ

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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Note, we have assumed r R�  small, and this equation is exact in the limit r 0→ . To 
exactly compute the MFPT for any value of r, we could marginalize over all path 
lengths from a point on the boundary of the domain ∂Ω to the boundary of the tar-

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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Applying equation (3) for the MFPT, we have

R R

r
R

2
1 .c ⎜ ⎟

⎛
⎝

⎞
⎠

π
= − +T (6)

As before, equation (6) is monotone decreasing in r since 
r

R

r2
c

2

2= −π∂
∂
T

, whereas it is 

increasing in R since 1
R

R

r 2
�� �
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For infinitesimal timesteps td , the probability of a velocity-direction change between 
t and t td+  is tdλ ⋅ . Velocity changes are sampled from a uniform distribution so that 

the probability of selecting a new velocity with angle 0, 2[ )φ π∈  is Pr
1

2
( )φ =

π
. For an 

unbounded domain (R → ∞), this would lead to trajectories made of ballistic step-

lengths x over the distribution p x e x( ) λ= λ−  for normalized velocity =v 1∥ ∥ .
For low turning probability 1λ� , we asymptotically approximate the hitting prob-

ability for a single path between boundary points ā( )λ . Such paths are no longer nec-
essarily comprised of a single straight segment; paths can be made up of two or more 
straight segments. However, we only focus on the change in hitting probability arising 
due to incorporating paths made of two straight segments. To begin, note the probabil-
ity of not turning (number of turns n  =  0) along a segment of length l is given

n l xPr 0 1 e d e ,
l

x l

0
( ) ∫λ= | = − =λ λ− − ⋅

 (10)

so a searcher heading towards the target will not turn with approximate probability 
e R r( )λ− − . Thus, the likelihood that the searcher is absorbed into the target by following 
a single segment from the boundary is

π
| = = | − = λ− −

−
n n R r

r R
Pr hit 0 Pr 0 e

2 sin /
,R r

1

( ) ( )
( )( ) (11)

where we assume f z uni

u n if
o n t  h  a p  b e f o s u m h i t t 
 0  T t a r y  i s

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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l l le 1 e ,ch
0

ch
1

¯( ) ¯ ( ) ¯λ = + −λ λ− − (17)

shown in figure 4(D).
Incorporating equations (14) and (17) into equation (3), the formula for the MFPT, 

we can account for the eects of interior turning:

l
a

R
1

1 .c( ) ¯( )
¯( )

⎛
⎝
⎜

⎞
⎠
⎟λ λ

λ
= − +T (18)

The main contribution to the reduction of the MFPT is due to a slight increase in the 
hitting probability ā( )λ  as shown in figure 4(C). However, increasing turning λ does not 
significantly impact the time to find the target (figure 4(B)). Even for larger values of 
λ, the MFPT remains relatively unchanged as opposed to the case 0λ = .

4.2. Spiral searches

We now turn our attention to an alternate strategy for locating a hidden target—spiral 
searches. Both insects and mammals may utilize spiral patterned trajectories as search 

Figure 4. MFPT decreases when the searcher turns in the interior (λ > 0). (A) To 
approximate the hitting probability ¯( )λa  over a single path, we account for the new 
probability of hitting after turning ( )/α θ πl, . (B) MFPT decreases as a function of 
λ, as demonstrated both by the theory (solid curve) in equation (14) and numerical 
simulations (circles). 3 1 T

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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paths to locate a target [25, 26]. This can be more ecient and even optimal, since 
it can reduce the time spent in previously visited patches of the environment [27]. 
However, spiral search may lead to unnecessarily long times needed to find the target 
if the spacing between rotations is too large or too small [28].

We consider search trajectories described by an Archimedean spiral 
b

2
( )ρ φ φ=

π
 

within the circular domain 
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we aim to identify the optimal strategy for searching the disconnected domain for the 
single target, especially as it relates to the domain-switching rate β.

We now compute the MFPT to find the target of radius r in a multiple subdo-
main environment 

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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In the case of instantaneous transits between subdomains T 0⟨ ⟩ = , the best strategy 
is to transition at every boundary encounter, 1β =

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
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To identify the optimal switching rate minβ β=  that minimizes the MFPT βcT ( ), we 
dierentiate

d

d
N T

a

N

N

1
1

ch 1
,c

2

2

( ) ⟨ ⟩
¯

( )
⎜ ⎟
⎛
⎝

⎞
⎠

β
β β

= − −
−T

and note T ( ) ( ) ( )″ β β= − >N N2ch 1 / 0c
2 3  for 0β > . Thus, any critical points occurring 

when 0β >  are minima. To identify the minimum, we set 0c min( )β =′T  and solve for

N

N

a

T a

1 ch

1
.min

¯
⟨ ⟩( ¯)

β =
−

−
 (28)

Thus, the optimal switching rate minβ  is inversely proportional to T⟨ ⟩, so the switch-

ing rate should decrease as the transit time increases (figure 7(A)). This allows for a 
more thorough search of a single subdomain before transitioning. Interestingly, equa-
tion (28) is roughly constant in the variable N as it is increased (figure 7(B)). Thus, 
for a very large number of sub domains N 1� , the parameters that determine the best 
switching rate are the chord length ch, probability of hitting the target ā, and the 
transition time T⟨ ⟩.

6. Discussion

We have studied a velocity-jump process model of persistent search in bounded domains. 
Initially, we considered a searcher that only turned on the boundary of a single con-
nected domain. Paths of the searcher are partitioned into segments that link points on 
the boundary. To derive the average MFPT to find the target, we approximated the 
average probability of hitting the target in a single segment ā. Pairing this with our 
approximation of an average segment-length ch, we then marginalized over all pos-
sible search path lengths. Importantly, we modeled the search process as memoryless, 
so each search segment was assumed to have been drawn from the same distribution. 
Applying this to single domains, we found the time to find the target decreases for tar-
gets closer to the boundary. When searchers had a small probability of turning on the 
interior of the domain, the time to find the target decreases slightly, due to an increase 
in the hitting probability of a single segment. Lastly, in domains comprised of multiple 
disconnected subdomains, a key parameter in determining the optimal search strategy 
is the time it takes the searcher to move between subdomains. Ultimately, we found 
the searcher should move between domains less often when subdomain transitions take 
longer.

Our study provides an idealized model of an organism’s search for a target in a 
confined domain. This model could apply to animals foraging in a patchy environment 
[30] or looking for shelter in controlled experiments [31] as well as their natural habi-
tat [28]. Furthermore, the velocity-jump process can produce long spatial correlations  
[15, 16], similar to those often observed in statistical analyses of organismal motion 
[32, 33]. Our analysis revealed that low-probability ( 1λ� ) turning on the interior of 

http://dx.doi.org/10.1088/1742-5468/2016/05/053201


http://dx.doi.org/10.1088/1742-5468/2016/05/053201
http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144521
http://dx.doi.org/10.1146/annurev.biophys.34.040204.144521
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1103/RevModPhys.85.135
http://dx.doi.org/10.1103/PhysRevLett.94.198101
http://dx.doi.org/10.1103/PhysRevLett.94.198101
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1073/pnas.0706599104
http://dx.doi.org/10.1073/pnas.0706599104
http://dx.doi.org/10.1073/pnas.0706599104
http://dx.doi.org/10.1007/s10955-004-5712-8
http://dx.doi.org/10.1007/s10955-004-5712-8
http://dx.doi.org/10.1007/s10955-004-5712-8
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1137/090752511
http://dx.doi.org/10.1137/090752511
http://dx.doi.org/10.1137/090752511
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1038/nphys830
http://dx.doi.org/10.1038/nphys830
http://dx.doi.org/10.1038/nphys830
http://dx.doi.org/10.1007/BF00277392
http://dx.doi.org/10.1007/BF00277392
http://dx.doi.org/10.1007/BF00277392
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rsif.2008.0014
http://dx.doi.org/10.1137/S0036139999358167
http://dx.doi.org/10.1137/S0036139999358167
http://dx.doi.org/10.1137/S0036139999358167
http://dx.doi.org/10.1086/286105
http://dx.doi.org/10.1086/286105
http://dx.doi.org/10.1086/286105
http://dx.doi.org/10.1371/journal.pone.0076531
http://dx.doi.org/10.1371/journal.pone.0076531
http://dx.doi.org/10.1890/08-0153.1
http://dx.doi.org/10.1890/08-0153.1
http://dx.doi.org/10.1890/08-0153.1
http://dx.doi.org/10.1038/nprot.2006.116
http://dx.doi.org/10.1038/nprot.2006.116
http://dx.doi.org/10.1038/nprot.2006.116


Persistent search in single and multiple confined domains: a velocity-jump process model

21doi:10.1088/1742-5468/2016/05/053201

J. S
tat. M

ech. (2016) 053201

 [23]  [21[]  [21[]  [ 23[]  

http://dx.doi.org/10.1088/1742-5468/2016/05/053201
http://dx.doi.org/10.1146/annurev.neuro.22.1.241
http://dx.doi.org/10.1146/annurev.neuro.22.1.241
http://dx.doi.org/10.1146/annurev.neuro.22.1.241
http://dx.doi.org/10.1080/17470210902816461
http://dx.doi.org/10.1080/17470210902816461
http://dx.doi.org/10.1080/17470210902816461
http://dx.doi.org/10.1016/S0165-0270(03)00187-0
http://dx.doi.org/10.1016/S0165-0270(03)00187-0
http://dx.doi.org/10.1016/S0165-0270(03)00187-0
http://dx.doi.org/10.1890/06-1916.1
http://dx.doi.org/10.1890/06-1916.1
http://dx.doi.org/10.1890/06-1916.1
http://dx.doi.org/10.2307/3565520
http://dx.doi.org/10.2307/3565520
http://dx.doi.org/10.2307/3565520
http://dx.doi.org/10.1006/anbe.2000.1539
http://dx.doi.org/10.1006/anbe.2000.1539
http://dx.doi.org/10.1006/anbe.2000.1539
http://dx.doi.org/10.1016/S0022-5193(03)00277-7
http://dx.doi.org/10.1016/S0022-5193(03)00277-7
http://dx.doi.org/10.1016/S0022-5193(03)00277-7
http://dx.doi.org/10.1007/s004420051023
http://dx.doi.org/10.1007/s004420051023
http://dx.doi.org/10.1007/s004420051023
http://dx.doi.org/10.1890/04-1806
http://dx.doi.org/10.1890/04-1806
http://dx.doi.org/10.1890/04-1806
http://dx.doi.org/10.1103/PhysRevLett.106.160601
http://dx.doi.org/10.1103/PhysRevLett.106.160601
http://dx.doi.org/10.1103/PhysRevLett.113.220602
http://dx.doi.org/10.1103/PhysRevLett.113.220602

