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suggested the design of orthonormal wavelet systems with vanishing moments for both the
scaling and the wavelet functions. They were first constructed by Daubechies [9] and she
named themcoiflets.

In [1] shifted vanishing moments for the scaling function’ were used to obtainone
point quadratures

f .x/�
X
k2Z

f .xk/’.x � k/; (1.1)

wheref is a sufficiently smooth function on the multiresolution spaceV0 andff .xk/g are
good approximations of the coefficients off in the expansion.

Since in [1] both matrices and operators were considered, the pointsfxkg were chosen
to bexk D k C �, where� is an integer. This “shift”� corresponds to the first moment of
the scaling function’,

� D
Z

R
x’.x/ dx: (1.2)

Note that� is not the center of mass because’.x/
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wavelet . The key to our approach is to insist on a reasonable approximation to linear
phase only in the passband of the associated low-pass filterm0.

It is well known that the properties defining coiflets can be easily described in terms of
the coefficientsfhkg of m0. The conditions onfhkg turn out to be dependent [14], and one
of the goals of this article is to derive a system that is free of redundant equations. To obtain
such a system, we perform a change of variables onfhkg via a linear transformation that
has the shift� as a parameter. This defining system is partly linear and partly quadratic.
For filter lengths up to 20 the system can be explicitly solved via algebraic methods like
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We also refer to suchH as a QMF. As a consequence of (2.3), H satisfies the following
functional equation:

H.z/H.z�1/CH.�z/H.�z�1/
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In terms of the symbolH , (3.1) requires thatX
j

.�1/j j khj D 0 for 0� k <M; (3.3)

or equivalently, the factorization

H.z/D
(

1C z
2

)M
Q.z/; (3.4)

whereQ.�1/ 6D 0.
As pointed out in the Introduction, we are interested in vanishing (shifted) moments of

the scaling function

M’
�;k D

Z
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Equations (3.6) and (3.8) imply that the following four conditions, valid for allk; 0�
k < N , are equivalent:

M’
k D

Z
R
xk’.x/ dx D �k; (3.12)

M’
�;k D

Z
R
.x � �/k’.x/ dx D �k0; (3.13)

Mh
�;k D

X
j

.j � �/khj D �k0; (3.14)

Mh
k D

X
j

j khj D �k: (3.15)

Therefore, imposing moment conditions for either the wavelet or the scaling function
amounts to finding a QMFH with moment conditions for its sequence of coefficients.
In particular, the first moment of’, as defined in (1.2), equals the derivative ofH at one,

� DH 0.1/:

On the other hand, (2.1) forcesjH.z/j � 1 for z on the unit circle. These last two properties
allow us to show that the value� should be within the support of’. Observe that this result
is not evident since’ is not a positive function.

PROPOSITION 3.2. LetH.z/D
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L�1X
jD0

.�1/j j khj D



COMPACTLY SUPPORTED COIFLETS 191

Proof. Applying the operator.xD/n (defined in the Appendix) atz D 1 to the QMF
equation (2.5), or taking derivatives at� D 0 in (2.2
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its values on a shifted dyadic grid:

p.x/D
X
k

p

(
� C k

2n

)
’.2nx � k/:

Since at some scale any smooth function can be well approximated by polynomials, we
have the almost interpolating property discussed in the Introduction.

Here we see the advantage of having bothM
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a neighborhood of� D 0

H.ei� /D aH .�/eipH .�/ and O’.�/D a O’
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FIG. 2. Comparison between the group delays ofm0 and O . Maximal coiflet for wavelet: length 18, case b
(top) and Daubechies’ least asymmetric filter of the same length (bottom).

least asymmetric filter in Fig.2 is defined as the maximally flat filter whose phase is as
linear as possible within the whole bandT��;�U. See [8
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we obtain thepolyphaseequation

H0.z/H0.z
�1/CH1.z/H1.z

�1/D 1

2
: (7.6)

The problem of finding a solutionH of the QMF equation (2.5) is thus replaced by finding
the solutionsH0 andH1 of thepolyphaseequation. Instead of performing two operations
on the variablez in (2.5), namely�z andz�1, in (7.6) we only havez�1.

8. THE CONSTRUCTION OF COIFLETS

Recall that we can write any polynomial QMF asH.z/ D PL�1
kD0 hkz

k , where
h0hL�1 6D 0.

We describe a system for coiflets not in terms offhkg but in terms of the new variables

ak D 1

kW
X
j

(
j � �

2

)k
h2j and bk D 1

kW
X
j

(
j � � � 1

2

)k
h2jC1;

where 0� k � l, andl D 1
2.L� 2/. The transformation fromfhkg to fak; bkg is linear and

parameterized by�. As before,� DPj jhj is the first moment of’.
For what follows, it is more convenient to describeak andbk for arbitraryk � 0, using

the operatorxD
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D 1

nW .xD/
n
(
x��=2H0.x/x

�=2H0.x
�1/C x�.��1=2/H1.x/x

.��1/=2H1.x
�1/
)
.1/

D
nX
kD0

.�1/k.an�kak C bn�kbk/ (8.1)

for 0� n� L� 2.
If n is odd, the previous equation is always satisfied and then, as we remarked earlier,L

2
equations are enough to characterize a QMF of lengthL.

8.2. Linear Conditions

We now discuss how to rewrite the (linear) conditions (4.1) and (4.2) for coiflets in terms
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8.3. A System for Coiflets

Combining (8.1) and (8.4), the system for coiflets can be written in terms of the
unknownsf�;am; : : : ; al; bm; : : : ; blg,

1

2
�n0D an C bn C

n�1X
kDm

.�1/k.an�k
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8.3.3. Coiflets with integer shifts.Coiflets for integer choices of the shift� were
first computed by Daubechies [9]. In all cases that we computed, coiflets with integer
shifts were always nonmaximal. In Table1 we list, for different lengthsL, the range
of possible integer shifts in.0;



COMPACTLY SUPPORTED COIFLETS 199

An equivalent system, obtained via Gröbner bases where� is treated as parameter is
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function (by settinga3D�b3). In the latter case, (9.3) becomes
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TABLE 2
Coiflet Filters of Length 8

k hk k hk

M D 3 0 �0:00899863735774892 M D 3 0 �0:03952785122359428
N D 5 1 �0:02054552466216258 N D 5 1 0:1271031281675352
� D �1 2 0:2202099211463259 � D �2 2 0:5323389066059403
Case Na 3 0:5701914465849665 Case Nb 3 0:440002251136967
MAXIMAL 4 0 :3422577968313942 MAXIMAL 4 �0:005981694132267174

5 �0:07306459213264614 5 �0:07120132136770919
6 �0:05346908061997128 6 0:01317063874992116
7 0:02341867020984207 7 0:004095942063206933

M D 3 0 0:1646660519380485 M D 3 0 0:3040839480619514
N D 3 1 0:5074101320413008 N D 3 1 0:414464867958699
� D 1 2 0:4435018441858542 � D 1 2 0:02524815581414562
Case 1a 3 �0:02223039612390291 Case 1b 3 0:2566053961239029

4 �0:1310018441858543 BAD 4 0:2872518441858542
5 0:02223039612390291 5 �0:2566053961239029
6 0:02283394806195145 6 �0:1165839480619514
7 �0:007410132041300974 7 0:085535132041301

M D 3 0 �0:01938529090153145 M D 3 0 0:0850102909015314
N D 3 1 0:1854738954507657 N D 3 1 0:1332761045492342
� D 2 2 0:5581558727045942 � D 2 2 0:2449691272954056
Case 2a 3 0:3810783136477028 Case 2b 3 0:5376716863522972

4 �0:05815587270459436 UGLY 4 0:2550308727045943
5 �0:06857831364770281 5 �0:2251716863522971
6 0:01938529090153145 6 �0:0850102909015314
7 0:002026104549234272 7 0:05422389545076572

M D 3 0 �0:05191993211769211 M D 3 0 �0:01058006788230788
N D 3 1 �0:0234375 N D 3 1 �0:0234375
� D 3 2 0:3432597963530763 � D 3 2 0:2192402036469236
Case 3a 3 0:5703125 Case 3b 3 0:5703125

4 0:2192402036469236 4 0:3432597963530763
5 �0:0703125 5 �0:0703125
6 �0:01058006788230788 6 �0:05191993211769211
7 0:0234375 7 0:0234375

Note. �1D 2:977273091796802,�2 D 2:239549738364678.

9.2. Coiflets of Length 18

A similar analysis can be done for filters of length 18. In Table4, we present a summary
of our findings by listing the filter coefficients for two cases: coiflets with integers shifts
and maximal coiflets. Filter coefficients are listed in Table6.

Even at higher numbers of vanishing moments and different lengths, we still found
UGLY and BAD filters. They always correspond to coiflets with integer shifts, but it is
not a peculiarity of that case. Varying�, we found regions of nonmaximal coiflets with a
similar behavior.
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TABLE 3
Summary of All Maximal Coiflets and Coiflets with Integer Shifts for Length 8

Filter � M N � kQk 2M�1 Remarks

Na 2.97727 3 5 1.45584 2.8764 4
Nb 2.23955 3 5 1.44599 2.94511 4
Ma 1.00539 4 3 1.77557 5.91608 8 Daubechies’ Extremal Phase
Mb 2.98547 4 3 1.77557 5.91608 8 Daubechies’ Least Asymmetric
1a 1 3 3 1.77528 2.16403 4
1b 1 3 3 0.14666 14.9356 4 BAD
2a 2 3 3 1.42232 3.11099 4
2b 2 3 3 0.93596 6.91099 4 UGLY
3a 3 3 3 1.77341 2.16473 4
3b 3 3 3 1.46353 2.82288 4

Note. Coefficients are listed in Table 2. The maximal case for wavelets coincides with Daubechies’ maximally
flat filters.

In Figs.11 and12, we plottedjm0j and’ for the cases 6c (UGLY) and 5b (BAD) with
length 18. The cases 7d and 6d, as listed in Table4, exhibit a similar behavior. Even though
their filter moduli do not oscillate as much as their counterparts of length 8, their behavior
is clearly different than those for whichkQk remains below 2M�1. As an example of
the latter situation, consider the filter 7c. The associated wavelet has only six vanishing
moments, but its Sobolev exponent is higher than the exponent for Daubechies’ wavelets
which have nine vanishing moments.

Note that in all the plots for wavelets in the Fourier domain, the support of the functions
is actually wider than shown.

FIG. 3. Integer shift coiflet: length 8, shift 2, case b (UGLY). Plots of absolute value of filterm0 and scaling
function.

FIG. 4. Integer shift coiflet: length 8, shift 1, case b (BAD). Plots of absolute value of filterm0 and scaling
function.
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FIG. 5. Integer shift coiflet: length 8, shift 2, case a. Plots of scaling function and filterm0.

FIG. 6. Integer shift coiflet: length 8, shift 2, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).

FIG. 7. Integer shift coiflet: length 8, shift 3, case a. Plots of scaling function and filterm0.
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FIG. 8. Integer shift coiflet: length 8, shift 3, case a. Plots of wavelet function in both time and Fourier
domain (absolute value, phase, and group delay).

FIG. 9. Maximal coiflet for scaling function: length 8, shift 2:9773. Plots of the scaling function and filterm0
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TABLE 4
Summary of All Maximal Coiflets, Coiflets with Integer Shifts, and Two Daubechies’ Maximally

Flat Filters for Length 18

Filter � M N � kQk 2M�1 Remarks

Na 7.81041 6 9 2.5149 16.5942 32 Listed in Table5
Nb 7.1771 6 9 2.49853 17.2438 32 Listed in Table5
Ma 5.94301 7 7 2.74543 33.9874 64 Listed in Table5
Mb 4.5681 7 7 2.71944 36.2534 64 Listed in Table5
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FIG. 13. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of filterm0 and scaling function.

10. CONCLUSION

The approach taken in this paper allows one to construct and classify coiflets, which
are wavelets with a high number of vanishing moments for both the scaling and wavelet
functions. Coiflet filters are useful in applications where interpolation and linear phase are
of particular importance.

We introduced a new system for FIR coiflets. In all cases investigated, the system had a
minimal set of defining equations. For filters of length up to 20, the system can be solved
explicitly, and the filter coefficients can thus be accurately determined. For longer filters
we applied numerical methods to compute some solutions. For a few specific examples we
studied the properties of coiflets corresponding to both integer and noninteger values of the
first moment of the scaling function. Nevertheless, the problem of the existence of coiflet
filters of arbitrary length and their full classification remains open.

FIG. 14. Maximal coiflet for scaling function: length 18, shift 7.1771. Plots of wavelet function in both time
and Fourier domain (absolute value, phase, and group delay).
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TABLE 5
Coiflet Filters of Length 18: Maximal Case

k hk k hk

M D 6 0 �0:00006423105557385401 M D 6 0 �0:0002036914946771235
N D 9 10:
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From (A.1) and (A.3)

znDnf .z/D
nX
kD0

snk .xD/
kf .z/: (A.4)

Note that for a polynomial of degreer, it is not true that.xD/nP .1/ is zero forn > r.
However, these values are linear combinations of.xD/nP .1/ for n� r, as we show in the
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