Wavelets, Multiresolution Analysis and Fast Numerical Algorithms

Bey n

. M poe lo eq e ode N ope on o co p e e $p_{\mathbf{j}} = \frac{\mathbf{x}}{\mathbf{i} \cdot \mathbf{j}} \frac{q_{\mathbf{i}}q_{\mathbf{j}}}{|\mathbf{i}|}$

e a e od y e e ed de ce fo ed c n p d e en eq on o p a e ne y e fo e co of n n e en y l cond on n e of e e n n e e e en ep e en on of e de e n e e en e p e od c on

e in y e

II.1 Multiresolution analysis.

f ee a nen e of e e en o oa offene y e e : — o e e nea e e nae d of e e en e

$$\boldsymbol{V}_{n}\!\subset\!\quad\subset\boldsymbol{V}\;\subset\boldsymbol{V}\;\subset\boldsymbol{V}\quad\quad\boldsymbol{V}\;\subset\boldsymbol{L}\;\;\boldsymbol{R}^{\mathrm{d}}$$

n n e c e z on a e a a ce V a n e d en a on

II.2 The Haar basis

n ac ze — ee a ec cea cf nc on of en e o ec ; $_{j;k}$ — $_{j=}^{j=}$ $_{j}$ — $\in Z$ a e a of V_{j} nd $_{j;k}$ — $_{j=}$ $_{j}$ $_{$

e deco pos on of finc on no en N posed e en N = n so of finc on c y for property en of section of the entropy of the entr

$$\mathbf{k} = \mathbf{n} = \begin{pmatrix} \mathbf{Z} & -n & \mathbf{k} + \end{pmatrix} f \quad d$$

e o n 📭 coe c en 🚁

$$d_{\mathbf{k}}^{\mathbf{j}+} - \frac{\mathbf{j}}{\sqrt{\mathbf{k}}} + \frac{\mathbf{j}}{\mathbf{k}}$$

nd e les

$$\frac{\mathbf{j}^{+}}{\mathbf{k}} - \frac{\mathbf{j}}{\sqrt{}} \mathbf{k} \qquad \mathbf{j}_{\mathbf{k}}$$

fo := n- nd := $\operatorname{n-id}$:= $\operatorname{n-id}$

o e a nd d fo excond a ade ned y e a of ee nd of a f nc on a ppo ed on a e $\mathbf{j}_{;\mathbf{k}}$ $\mathbf{j}_{;\mathbf{k}'}$ \mathbf{y} $\mathbf{j}_{;\mathbf{k}}$ $\mathbf{j}_{;\mathbf{k}'}$ \mathbf{y} nd $\mathbf{j}_{;\mathbf{k}}$ $\mathbf{j}_{;\mathbf{k}'}$ \mathbf{y} e e e e c f nc on of e n e nd $\mathbf{j}_{;\mathbf{k}}$ — \mathbf{j} = \mathbf{j} — e e e no of y eco e c e e By conade non n el ope o

$$f$$
 $y \ dy$

nd e p nd nl e e ne n od en on e dec y of en e for C de on Zyl nd nd p e do d e en ope o e dec y of en e for on of e dance fo ed l'on afae n ea epean ona n n eo l'n e ne ea casa of ope o a el en y n el o da on e ne a e a oo y fo e d l'on o e p e e ne a y of C de on Zyl nd ope o a x fy e e e e e

fo \nearrow e $M \ge$ Le M = n nd con \nearrow de

e e e \mathbf{a} e e d \mathbf{a} nce e een $|-'| \ge$ nce

$$_{\mathbf{j};\mathbf{k}}$$
 d .—

e e

$$\downarrow$$
 \downarrow y f r x

e on el nn edec y nn cen con e co p nl n e ce e n n nl e ce con n nl e ce e pon e e o p nl n p c c e n n nl e ce e pon e e o p nl n p c c e n n nl e ce e pon e e o p e y e e e o e f e f a l o e ce e f o e f e f a l o e ce e pon e e o p e y e e o f e f a l o e e f a l o e e f a l o e e f a l o e e f a l o e e f a l o e e f a l o e f a l o e e f a l o e f

II.3 Orthonormal bases of compactly supported wavelets

e q e a on of e e a ence of e a on n y a a oo f nc on of Cond on e a no e a ed n e cona c on of e o ono e e a a lende e cona c on of e o ono e e conade

econd eo of on y of
$$\{ - \}_k z$$
 pear z_+ z_+

nd

Lemma II.1 Any trigonometric polynomial solution

✓ of (2.26) is of the form

$$\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$$

where $M \geq -$ is the number of vanishing moments, and where - is a polynomial, such that

$$\mid e^{i} \mid -P \Rightarrow n \frac{1}{2} \Leftrightarrow n \stackrel{\mathsf{M}}{\longrightarrow} \frac{1}{2} \Leftrightarrow \frac{1}{2} \operatorname{co} \Rightarrow \stackrel{\mathsf{M}}{\longrightarrow} \frac{1}{2}$$

where

$$P y = \begin{bmatrix} k & \mathbf{M} \\ k \end{bmatrix} \qquad M = \begin{bmatrix} \mathbf{I} \\ y^{\mathbf{k}} \end{bmatrix}$$

and is an odd polynomial, such that

$$\leq P y \quad y^{\mathsf{M}} \quad \frac{1}{2} - d$$

e e $\begin{picture}(1,0){c} \begin{picture}(1,0){c} \begin{picture}(1,0){c}$

, $^{\uparrow}$ e $_{\bullet}$ ce W^{M} ; $_{\bullet}$ $_{\bullet}$ nned y e o ono

 $\mathbf{W}^{\mathbf{M}}$; nd e $\mathbf{w}^{\mathbf{M}}$; $\mathbf{v}^{\mathbf{M}}$ nned y d on, nd n, on of e $\mathbf{w}^{\mathbf{M}}$; nd e $\mathbf{v}^{\mathbf{M}}$ nd e $\mathbf{v}^{\mathbf{M}}$

 iy^{1} .— M — ie no e — e od en son — e e e see e e e e en e of e n on sof one e — e od en son — e e e — e od en son — e od e e — e od e e — e od en son — e od en son — e od e e — e — e e e — e od en son — e od en son — e

II.5 A remark on computing in the wavelet bases

$$\mathcal{M}^{\mathbf{m}}$$
 .— \mathbf{m} d \mathcal{M} .— M —

n e $\mbox{\ \ aof\ \ }$ e e coe c en $\mbox{\ \ \ \ \ }\{\ _k\}_k^k$ $\mbox{\ \ \ \ }$ y e fo nd $\mbox{\ \ \ and\ \ \ }$ fo fo

$$\mathbf{x} = \frac{\mathbf{Y}}{\mathbf{y}} \mathbf{y} \qquad \mathbf{y} = \mathbf{y}$$

ее

ec e y l'ene n' eq ence of ec o $\{\mathcal{M}_r^m\}_m^m$ n e de ed cc cy y ec e y l'ene n' eq ence of ec o $\{\mathcal{M}_r^m\}_m^m$ fo r —

$$\mathcal{M}^{m}_{r+} = \begin{matrix} j_{\boldsymbol{X}^{m}} & \vdots \\ j_{r} & j_{r} \end{matrix}$$

$$\mathcal{M}^{\mathsf{m}} = {\mathsf{m}}^{\frac{1}{2}} {\mathsf{k}} {\mathsf{k}} {\mathsf{m}} {\mathsf{m}} = M -$$

c ec o $\{\mathcal{M}^{\mathbf{m}}_{\mathbf{r}}\}^{\mathbf{m}}_{\mathbf{m}}$ ep e en \mathcal{M} o en sof e p od c n r e nd e on con e les p d y No ce e ne e co p ed e f nc on e f

e non 3 nd d nd 3 nd d fo

III.1 The Non-Standard Form

Le e nope o

$$\textbf{L} \quad \textbf{R} \quad \rightarrow \textbf{L} \quad \textbf{R}$$

y Denn' poeconope o $oldsymbol{\downarrow}$ on e $oldsymbol{\downarrow}$ $oldsymbol{\downarrow}$ ce $oldsymbol{\mathsf{V}}_{oldsymbol{\mathsf{j}}}$; \in $oldsymbol{\mathsf{Z}}$

$$P_{\mathbf{j}}$$
 L R \rightarrow V_j

À

$$P_{\mathbf{j}}f \qquad -\frac{\mathbf{X}}{\mathbf{k}} \langle f \quad \mathbf{j}; \mathbf{k} \rangle \quad \mathbf{j}; \mathbf{k}$$

 $\operatorname{nd} \ e \ p \ \operatorname{nd} \ n \quad \text{``} \ e \ e \ \operatorname{pop} \ c \quad \text{e} \ e \ e \ o \quad n$

ее

$$\mathbf{j} = P_{\mathbf{j}} - P_{\mathbf{j}}$$

 $oldsymbol{a}$ epoec on ope o on e $oldsymbol{a}$ $oldsymbol{a}$ p ce $oldsymbol{W_j}$ f ee $oldsymbol{a}$ eco $oldsymbol{a}$ $oldsymbol{a}$ $oldsymbol{a}$ e $oldsymbol{n}$ $n \rightarrow e d o f e e e$

nd f e z e; — z e nez z e en

e e \sim -P P dece z on of e ope o on e near e p n nd deco poe e ope o no a of con on a fo

$$-\{A_{\mathbf{j}} \ B_{\mathbf{j}} \ ,_{\mathbf{j}}\}_{\mathbf{j}} \mathbf{z}$$

c n on e \Rightarrow \Rightarrow ce \Rightarrow \bigvee_{j} nd \bigvee_{j}

$$A_{\mathbf{j}} \quad \mathbf{W}_{\mathbf{j}} \rightarrow \mathbf{W}_{\mathbf{j}}$$

$$B_{\mathbf{j}} \quad \mathbf{V}_{\mathbf{j}} \rightarrow \mathbf{W}_{\mathbf{j}}$$

, ,
$$W_j \rightarrow V_j$$

e e ope o $\{A_j \ B_j \ Z \ e de ned A_j .- j j B_j .- j P_j nd$ e ope o $\{A_j B_j \}_{j \in \mathbb{Z}}$ d ec $\{A_j B_j \}_{j \in \mathbb{Z}}$ d ec $\{A_j B_j \}_{j \in \mathbb{Z}}$ e de n on

$$\mathbf{j} = \begin{bmatrix} A_{\mathbf{j}+} & B_{\mathbf{j}+} \\ A_{\mathbf{j}+} & \mathbf{j}+ \end{bmatrix}$$

$$_{j}\quad V_{j}\rightarrow V_{j}$$

e ope o ep eeqn e pp n

earned y e x n pp m
$$A_{\mathbf{j}+} B_{\mathbf{j}+} \\ \bullet \overset{\mathbf{j}+}{\mathbf{j}+} \overset{\mathbf{j}+}{\mathbf{j}+} W_{\mathbf{j}+} \oplus V_{\mathbf{j}+} \rightarrow W_{\mathbf{j}+} \oplus V_{\mathbf{j}+}$$

f e e \downarrow co \downarrow e e n en

$$-\{\{A_{\mathbf{j}}\ B_{\mathbf{j}}\ ,_{\mathbf{j}}\}_{\mathbf{j}}\ \mathbf{z}_{\mathbf{j}}\ \mathbf{n}\quad \mathbf{n}\}$$

e e $_{\mathbf{n}}$ $-P_{\mathbf{n}}$ $P_{\mathbf{n}}$ f e n e of $_{\mathbf{r}}$ e $_{\mathbf{r}}$ n e en $_{\mathbf{r}}$ - e ope o e of n zed $_{\mathbf{r}}$ oc of e e $_{\mathbf{r}}$ e nd Le $_{\mathbf{r}}$ e e fo o n o e on $_{\mathbf{r}}$ nd

. † e ope o $A_{\mathbf{j}}$ de \mathbf{z} e \mathbf{z} e n e c on on e \mathbf{z} e \mathbf{z} on y ance e \mathbf{z} ap ce $\mathbf{W_i}$ n \mathbf{a} nee en of ed ec \mathbf{a} n

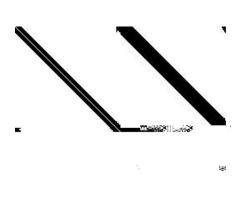
e ope o B_j , j n nd dee e e n e c on e een e e e ; nd co \mathbf{z} \mathbf{z} $\mathbf{e}_{\mathbf{z}}$ ndeed $\mathbf{e}_{\mathbf{z}}$ \mathbf{z} $\mathbf{v}_{\mathbf{j}}$ con $\mathbf{v}_{\mathbf{z}}$ $\mathbf{e}_{\mathbf{z}}$ $\mathbf{v}_{\mathbf{j}}$

e ope o jan" e led e aon of e ope o j

e ope o A_j B_j nd, j e ep e en ed y e ce j j nd j

nd

A 1				â¹
				^1
			=	d^2
				^3 ^3



. The Ane peof nenon and d fo the pe

e ope o j epe en ed y e z z z j k; k' = y j; k j; k' y d dy en e of coe c en k; k' = N - epe ed pp c on of e fo p od ce k; k' k m k + k + k m k + k + k m k + k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k + k m k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k + k m k + k m k + k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k m k + k m k + k m k + k m k + k m k + k m k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k + k m k m k + k m k + k m k + k m k + k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k m k + k m k

III.2 The Standard Form

e and d fo ao ned y ep e en n

$$V_j = W_{j'>j}$$

nd con de n fo e c \mathbf{z} e \mathbf{z} e ope o $\mathbf{z}\{B_{\mathbf{j}}^{\mathbf{j}'}, \mathbf{j}_{\mathbf{j}'}^{\mathbf{j}'}\}_{\mathbf{j}'>\mathbf{j}}$

$$B_{\mathbf{j}}^{\mathbf{j}'} \quad \mathbf{W}_{\mathbf{j}'} o \mathbf{W}_{\mathbf{j}}$$

f e e \rightarrow e co \rightarrow e n en \rightarrow e d of

$$V_{j} = V_{n} \int_{j'-j+}^{j'} W_{j'}$$

n ac a e ope o $\{B_{\mathbf{j}}^{\mathbf{j}'}, \underline{j}'\}$ fo $\{B_{\mathbf{j}}^{\mathbf{n}'}\}$ nd n dd on fo e c a e e ope o $\{B_{\mathbf{j}}^{\mathbf{n}+}\}\}$ nd $\{B_{\mathbf{j}}^{\mathbf{n}+}\}\}$ nd $\{B_{\mathbf{j}}^{\mathbf{n}+}\}\}$

$$B_{\mathbf{j}}^{\mathbf{n}+} \quad \mathbf{V_n} \rightarrow \mathbf{W_j}$$

$$oldsymbol{ar{V}}_{j}^{n+} \quad W_{j}
ightarrow V_{n}$$

$$= \{A_{\mathbf{j}} \ \{B_{\mathbf{j}}^{\mathbf{j}'}\}_{\mathbf{j}'}^{\mathbf{j}'} \stackrel{\mathbf{n}}{\mathbf{j}}_{+} \ \{\underbrace{}_{\mathbf{j}}^{\mathbf{j}'}\}_{\mathbf{j}'}^{\mathbf{j}'} \stackrel{\mathbf{n}}{\mathbf{j}}_{+} \ B_{\mathbf{j}}^{\mathbf{n}+} \ \underbrace{}_{\mathbf{j}}^{\mathbf{n}+} \ \mathbf{n}\}_{\mathbf{j}} = \mathbb{F}_{\mathbf{0}}^{\mathbf{n}} \quad \text{o}$$

7

f e ope o colon zed coccof e compare do eratoj /R36 (3aV)Tj /R360 Td (Figues

 d^1

 d^2

d

e co p e³³ on of ope o ³

e co person of ope o so no e o da e cona con of e pre epe e en onano ono e a decretar e peed of cop on lo a e e coperson of do of lea foe pe ce ed y e odao e n nd nl pre epe en on no e a y e deq e for pre pp cona e coperson of ope o acrafo epe en on no anode o exerce y cope no expressor e and dond non and d for sof ope o an e e e e y cope y e e ed acoperson releason de casof on non and d for sof ope o

the matrices j, j (3.16) - (3.18) of the non-standard form satisfy the estimate

$$|\mathbf{j}_{i;l}| \quad |\mathbf{j}_{i;l}| \quad |\mathbf{j}_{i;l}| \le \frac{C_{\mathsf{M}}}{|\mathbf{j}_{i}|} \le \frac{C_{\mathsf{M}}}{|\mathbf{j}_{i}|}$$

 $\text{ for all } |-_{\mathbf{y}}| \geq \ M.$

Proposition IV.2 If the wavelet basis has M vanishing moments, then for any pseudodi erential operator with symbol of and of satisfying the standard conditions

$$| \quad \mathbf{x} \quad \mathbf{x} | \leq C \; ; \qquad | \mathbf{x} | \qquad + \qquad \qquad \mathbf{x}$$

the matrices $^{\rm j}$, $^{\rm j}$ (3.16) - (3.18) of the non-standard form satisfy the estimate

$$\begin{vmatrix} \mathbf{j}_{i;l} & | \mathbf{j}_{i;l} \end{vmatrix} = \frac{\mathbf{j} C_{M}}{\mathbf{k} - \mathbf{t}^{|M+|}}$$

for all integer ▶ , , .

f e pp o e e ope o N y e ope o N;B o ned f o N y e ope o B o ned f o N y e ope o B o ned f o N o ned f o Ope o B o ned f o Ope o Op

$$|| \mathbf{N}; \mathbf{B} - \mathbf{N}|| \le \frac{C}{B^{\mathbf{M}}} \text{ of } N$$

$$|| \mathbf{N}; \mathbf{B} - \mathbf{N}|| \le \frac{C}{B^{\mathbf{M}}} \text{ of } N \le \mathbf{Q}$$

Theorem IV.1 (G. David, J.L. Journe) Suppose that the operator (3.1) satis es the conditions (4.5), (4.6), and (4.16). Then a necessary and su cient condition for to be bounded on L is that in (4.24) and y in (4.25) belong to dyadic $B \ M \ O$, i.e. satisfy condition

 $\operatorname{p} \frac{\mathsf{p}}{|\;\;|\;\;} \mathsf{j} | \quad \operatorname{p} \quad \mathsf{j} \quad |\; d \leq C$

where is a dyadic interval and

$$\mathbf{z}$$
 \mathbf{z} \mathbf{z} \mathbf{z}

p nl e ope o no e of ee e e e nde nl e

ep e y e do o e e e e e e e finciono nd e

e o y co p ed n e p ocedor cono c nl e nono nd d fo nd nd y e

ed o p o de ef eo e of e no of e ope o

e d''s e en 's l'ope o 's 's ele s'es

V.1 The operator d=dx in wavelet bases

```
ee _{n} e e oco e on coe c en _{*} of e e _{-} { _{k} } _{k}^{k} _{-}
                                                                                      n - \begin{matrix} L \times n \\ & i & i+n \end{matrix} n - L - 
           ≠e y o ≠e e oco e on coe c en ≠ n e en nd ce ≠ e ze o
                                                                                                      _{\mathbf{k}} .— L —
y e e fyed y and o co p e, y e | nd, y e |
                                                                                            r → | -- - × n co... 

\uparrow \downarrow \qquad \checkmark \qquad | \quad ----\frac{k}{k} \qquad k \quad \cos \lambda \qquad - \quad \checkmark \quad -\frac{k}{k} \qquad k \quad \cos \lambda \quad \checkmark

          e e _{\mathbf{n}} e ^{\dagger} en n Co n ^{\dagger} nd o _{\bullet} fy e o
                                                                                                                   ≱nce
                                                                       - \quad \stackrel{\mathsf{m}}{\not\sim} \quad | \quad - \quad \text{fo} \quad | \leq M -
```

 $\mathbf{n}^{\mathbf{r}} = \mathbf{r}^{\mathbf{r}} \quad \mathbf{e} \quad \mathbf{e} \quad \mathbf{e} \quad \mathbf{r}^{\mathbf{r}} \quad \mathbf{s}$ $r_{\mathbf{l}} := r_{\mathbf{l}} \qquad \qquad \qquad \mathbf{x} \qquad \qquad \mathbf{z} \in \mathbf{Z}$ e e D_1 = D_2 d D_2 = D_3 e e o en sof e f nc on D_4 e on fo a pyon nf o e n fo a nd and Le n z e and nd D_4 = e o n ее f M > en $| \cdot | \cdot | \cdot | \cdot | \leq C \qquad | \cdot | \cdot |$ e e nd ence e nel n e y con e l en l e on fo o af o Le of . , e e a o n $|.| \blacktriangleleft | \leq C$ $| \blacktriangleleft | \stackrel{\mathsf{M} + \log_2 \mathsf{B}}{|}$ ее $B - p \mid e^{i} \mid$ ее

$$r < -\frac{\mathbf{x}}{r_{1}} e^{i\mathbf{l}}$$

$$r_{even} < -\frac{\mathbf{x}}{r_{1}} e^{i\mathbf{l}}$$

nd

$$r_{\text{odd}} \blacktriangleleft r_{\text{I}+} e^{i \text{I}+} =$$

No cn

$$r_{\text{even}} \ll r \ll r \ll$$

nd

nd an eo n fo

e e

e nl \leftarrow n e eo n r - r nd \Rightarrow e n q ene of e p on of e nd fo o fo e n q ene of e ep e en on of d d en e p on r_1 of e nd e con de e ope o j de ned y excoe c en son e \Rightarrow p ce $\mathbf{V_j}$ nd pp y o \Rightarrow c en y soo f nc on f nce $r_1^{\mathbf{i}}$ - $r_1^{\mathbf{i}}$ e e e

$$\mathbf{j}f = -\frac{\mathbf{x}}{\mathbf{k} \cdot \mathbf{z}} = \frac{\mathbf{j} \cdot \mathbf{x}}{\mathbf{r}_{\mathbf{l}} f_{\mathbf{j};\mathbf{k}-1} - \mathbf{j};\mathbf{k}} = \frac{\mathbf{g}}{\mathbf{x}}$$

ее

$$f_{\mathbf{j};\mathbf{k}} = \int_{\mathbf{j}}^{\mathbf{j}} \mathbf{z}_{+} f$$
 $f = \int_{\mathbf{x}}^{\mathbf{j}} d$

"e n ee

$$f_{\mathbf{j};\mathbf{k}-\mathbf{l}}$$
 —

ace $\longrightarrow -\infty$ ope o \longrightarrow nd d concde on \longrightarrow oo finc on \longrightarrow nd difference \longrightarrow op o e \longrightarrow difference e \longrightarrow on o e nd \longrightarrow nq e \longrightarrow e e on \longrightarrow fo o \longrightarrow no fo

Remark 2 fe no e e p e son son de form nd form nd p ind n od c nf e co e on coe c en spin i i+n p on n e p e son form n e p e p e son form n e p e p e son form n e p e son for

Examples. o ee pere e D ecer ee conrection of M ee M representation of M and M ence of M representation M repres

e nd y co p n^{k} an M

$$| -C_{\mathsf{M}} | - | -C_{\mathsf{M}} | \frac{\mathsf{M}}{\mathsf{m}} | \frac{-\mathsf{m} | \mathsf{co}_{\mathsf{M}} | - | |}{M | \mathsf{M}} | \frac{\mathsf{M}}{\mathsf{M}} | - | | | | | | | |$$

ее

$$C_{\mathsf{M}} = \frac{M - \mathbf{M}}{M - \mathbf{M}}$$

y cop n e e

e c en a m n e on y con c on e coe c en r_1 e e a e fo D ec e a e e a e fo l en

j ene e of epp d d o yno e

nd

$$r$$
 $-- r$ $---$

on n e c n y a a c o ce of coe c en a fo n e c d e en on

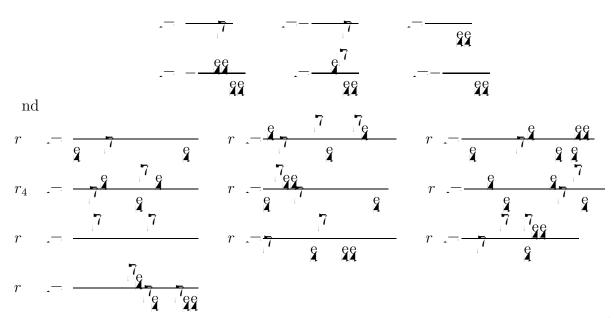
2
$$M$$
 - $\frac{7}{6}$ $r_1 = \frac{7}{7}$ $r_2 = \frac{7}{7}$ $r_3 = \frac{7}{7}$ $r_4 = \frac{7}{7}$

and
$$r = -\frac{9}{9} \qquad r = \frac{9}{9} \qquad r = -\frac{9}{9}$$

$$r_4 = -\frac{9}{9} \qquad r = -\frac{9}{9} \qquad r = -\frac{9}{9}$$

4
$$M = \frac{9}{8}$$
 $--\frac{7}{8}$ $r = \frac{7}{8}$ $r = \frac{7}{7}$ $r = \frac{7}{7}$

5 *M* .--



Coe c en ${\mathfrak p}$ fo ${\mathfrak p}$ fo e fo o n e e fo e fo

Iterative algorithm for computing the coe cients r_1 .

V.2 The operators $d^n=dx^n$ in the wavelet bases

o e ope o d d e non \Rightarrow nd d fo of e ope o d d n \Rightarrow co p e e y de e ned y \Rightarrow ep e \Rightarrow n on on e \Rightarrow \Rightarrow ce V e y e coe c en \Rightarrow

$$r_{\mathbf{I}}^{(\mathbf{n})} = \mathbf{Z}_{+} \qquad -\mathbf{\chi} \frac{d^{\mathbf{n}}}{d^{(\mathbf{n})}} \qquad d \qquad \mathbf{\chi} \in \mathbf{Z}_{+}$$

o en ey
$$r_{\mathbf{l}}^{\mathbf{n})} = - \mathbf{e}^{\mathbf{n}} |\mathbf{l} + \mathbf{e}^{\mathbf{i} \mathbf{l}} d\mathbf{e}$$
 fenel an o ease so ee

Proposition V.2 1. If the integrals in (5.52) or (5.53) exist, then the coe cients $r_1^{(n)}$, $t_1 \in \mathbf{Z}$ satisfy the following system of linear algebraic equations

and

$$\mathbf{x} = \mathbf{r} \mathbf{r}^{\mathbf{n}} = -\mathbf{n} \mathbf{n}$$

where k are given in (5.19).

2. Let $M \geq n$, where M is the number of vanishing moments in (2.16). If the integrals in (5.52) or (5.53) exist, then the equations (5.54) and (5.55) have a unique solution with a nite number of non-zero coe cients $r_{\rm I}^{\rm n}$, namely, $r_{\rm I}^{\rm n}$ /- for $-L \leq {\rm r} \leq L-$. Also, for even n

$$r_{\mathbf{l}}^{\mathbf{n}} = r_{\mathbf{l}}^{\mathbf{n}}$$

$$\times r_{\mathbf{l}}^{\mathbf{n}} = n = n = n = n$$

and

$$r_{\mathbf{l}}^{\mathbf{n}}$$

and for odd n

o en M — do no e e e M — o de e ponen se , e e se on a n of e d de e e son y f e n e of n a n o en M —

poe Le ade e eq on co e pond n'o e fo $d^{\bf n}$ d'e cyfo e e e

$$r_{\rm l}^{\rm n)} = \frac{{\sf z}}{{\sf k} \cdot {\sf z}} |_{{\sf k} \cdot {\sf z}}$$

e efo e

$$r \leqslant -\frac{\mathbf{X}}{\mathbf{k} \cdot \mathbf{Z}} | \cdot | \cdot | \cdot | \cdot | \cdot | \cdot |$$

ее

$$r < -\frac{\mathbf{x}}{r_{\mathsf{I}}^{\mathsf{n}}} e^{\mathrm{i}\mathbf{l}}$$

a n e e on

n o e i nd de of nd ni o e e en nd odd nd cean pp e y e e

f

$$r \leftarrow r^{-n}$$
 for $r \leftarrow r^{-n}$ for $r \leftarrow r^{-n}$

Le \mathfrak{z} con \mathfrak{z} de e ope o M on pe od c f nc on \mathfrak{z} d \mathfrak{z} n M f \mathfrak{z} \mathfrak{z} \mathfrak{z} \mathfrak{z} \mathfrak{z} \mathfrak{z} \mathfrak{z} \mathfrak{z}

N	, Gr	. 6 p	
64	0.14545E+04	0.10792E+02	
128	0.58181E+04	0.11511E+02	
256	0.23272E+05	0.12091E+02	
512	0.93089E+05		

e con o l'Ion ope o s'n e le s'es

n a ec on e conade e co p on of e non a nd d fo of con o on ope o a o con o on ope e e e q d e fo a fo ep e an \mathbf{n} e e ne on \mathbf{V} e of e a pea fo d e

nd e den y fo o af o

nce e o en sof e f nc on n 1 7 eq on e e d 2 o pon q d e fo fo co p n e e p e en on of con o on o e ne se e fo co p c y 2 ppo ed e e se fo so e pec c o ce of e e e e se de e e e e f ed o en sof e f nc on n se e fe pe fo

y≱e of

ре

ne le ceq on a ec o y poccond on a c y pe f e y o of e ope o a o of eneo a of pe o c e e ope o a con pe e y de ned y a ep e en on on V

Le aconade o e pea of a c ope o a e e ope o of c on deven on on deven on

VI.1 The Hilbert Transform

e de 🦼

 \checkmark e ppyo e od o e co p on of e non \Rightarrow nd d fo fo

$$-\mathcal{H}f \quad y \quad --p \qquad \frac{f}{-}d$$

e e p deno e p nc p e e e p e p nc p e on of $\mathcal H$ on $\mathbf V$ p de ned y e coe c en

$$r_1 = \begin{bmatrix} \mathbf{Z} \\ -\mathbf{\zeta} \end{bmatrix} \mathcal{H} \qquad d \qquad \mathbf{\zeta} \in \mathbf{Z}$$

c n n cope ey de ne o e coe c en sof e non s nd d $\mathcal{H} = \{A_{\mathbf{j}} \ B_{\mathbf{j}} \ , \ j\}_{\mathbf{j}} \mathbf{z} \ A_{\mathbf{j}} = A \ B_{\mathbf{j}} = B \ \text{nd} \ , \ j = 1$ e e e

Coe cients

Coe cients 1 M = 6 1 -0.588303698 9 -0.035367761 2 -0.077576414 10 -0.031830988 11 -0.028937262 3 -0.128743695 12 -0.026525823 4 -0.075063628 5 -0.064168018 13 -0.024485376 14 -0.022736420 6 -0.053041366 15 -0.021220659 7 -0.045470650 8 -0.039788641 16 -0.019894368

of e n to fo D ec e e e e

. e coe c en $r_1 \in \mathbf{Z}$ n $r_2 \in \mathbf{Z}$ so e fo o n $r_2 = \mathbf{Z}$ so e fo o n $r_3 = \mathbf{Z}$ so e fo o n $r_4 = \mathbf{Z}$ so e eq on.

 $r_{\mathbf{I}} = r_{\mathbf{I}} - \mathbf{k}$ $k = r_{\mathbf{I}} + k$ e e e coe c en $\mathbf{z}_{\mathbf{k}}$ e \mathbf{l} en \mathbf{n} and \mathbf{l} e \mathbf{o} n e \mathbf{y} p o caof $r_{\mathbf{l}}$ fo \mathbf{l} e \mathbf{l}

By e n n e sof. < z < $r_1 = -$ |. < | an < d <

e o n $r_1 = -r_1$ nd p r = q e no e e coe c en r c nno e de e ned fo eq on e nd on e coe c en r c nno e de e ned o eq on e nd e e y po c cond on e co p e e coe c en r r_1 \not ny p e e ed cc cy **Example.**

VI.2 The fractional derivatives

de la efo o no de no on of f c on de e

$$\mathbf{x} f = \frac{\mathbf{z}_{+}}{\mathbf{y}_{-}} f y dy$$

e.

po ded and e e non a nd d fo $\mathbf{z} = \{A_{\mathbf{j}} B_{\mathbf{j}}, \mathbf{j}\}_{\mathbf{j}} \mathbf{z}$ soop ed $A_{\mathbf{j}} = {}^{\mathbf{j}} A B_{\mathbf{j}} = {}^{\mathbf{j}} B$ nd $\mathbf{j} = {}^{\mathbf{j}} A B_{\mathbf{j}} = {}^{\mathbf{$

nd

e coe c en r_1 , fy e fo o n y e of ne e y o e fy c eq on a

ee ecoecen k et en n an k nd 7 eo n e y pocaof $r_{\mathbf{l}}$ fo te

$$r_1 = \frac{1}{\sqrt{1 - r_1}} + O \frac{1}{\sqrt{1 + r_1}}$$
 fo $r_1 = \frac{1}{\sqrt{1 - r_1}} + O \frac{1}{\sqrt{1 + r_1}}$ fo $r_1 = \frac{1}{\sqrt{1 - r_1}} + O \frac{1}{\sqrt{1 + r_1}}$ fo $r_2 = \frac{1}{\sqrt{1 + r_1}} + O \frac{1}{\sqrt{1 + r_1}}$ fo $r_3 = \frac{1}{\sqrt{1 + r_1}} + O \frac{1}{\sqrt{1 + r_1}} + O \frac{1}{\sqrt{1 + r_1}} + O \frac{1}{\sqrt{1 + r_1}}$ fo $r_3 = \frac{1}{\sqrt{1 + r_1}} + O \frac{1$

Example.

M 4 p c on of ope o h n ele e

VII.1 Multiplication of matrices in the standard form

re p c on of cea of C de on Zy nd nd p e do d een ope o a n e a nd d fo eq ea o O N of N ope on a n dd on apo a e o con o e d of e "n e nd y e n o ze o e en ea n e p od c e o e a o d of

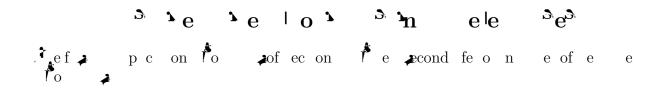
VII.2 Multiplication of matrices in the non-standard form

· LR
$$\rightarrow$$
 LR

en e non a nd d fo a of · nd $\{A_{\mathbf{j}} \ B_{\mathbf{j}} :_{\mathbf{j}}\}_{\mathbf{j}} \mathbf{z}$ nd $\{A_{\mathbf{j}} \ B_{\mathbf{j}} :_{\mathbf{j}}\}_{\mathbf{j}} \mathbf{z}$ e co p e e non a nd d fo $\{A_{\mathbf{j}} \ B_{\mathbf{j}} :_{\mathbf{j}}\}_{\mathbf{j}} \mathbf{z}$ of .— · e ec e ope o a of

n y e e e 7 of o e 3 7 e e
$$\frac{\mathbf{x}^{\mathbf{n}\mathbf{h}}}{\mathbf{A}_{\mathbf{j}}A_{\mathbf{j}}}$$
 $A_{\mathbf{j}}A_{\mathbf{j}}$ $B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}B_{\mathbf{j}}$ $A_{\mathbf{j}}B_{\mathbf{j$

of ope on edec eeloo ep ee eo n eof ope on ope op op op op on oNe e n ope o $A_{\mathbf{j}}$ $B_{\mathbf{j}}$. n tot49-410.315ac5 0 Td (36su8712.7097 0552



VIII.1 An iterative algorithm for computing the generalized inverse

n o de o

e e f . f e cc cy e od f e en e of $X_{\mathbf{k}}$ e o f e e f e e f e e f e o ed f e e c e on

$\mathbf{Size}\ N\times N$	SVD	FWT Generalized Inverse	L_2 -Error
128 × 128	20.27 sec.	25.89 sec.	$3.1\cdot10^{-4}$
256 × 256	144.43 sec.	77.98 sec.	3 42 · 10 ⁻⁴
512 × 512	1,155 sec. (est.)	242.84 sec.	$\mathbf{60 \cdot 10^{-4}}$
1024 × 1024	9,244 sec. (est.)	657.09 sec.	$7.7 \cdot 10^{-4}$
•••	•••		
$2^{15}\times2^{15}$	9.6 years (est.)	1 day (est.)	

Le adez e e e e lo and c nl n e c f nc on c c a ope o a n e p e en ed e c en y e a fo p e do d e en op e o a N e c e a n d e e p e fo nce of e e lo a e epo ed ep e y

VIII.2 An iterative algorithm for computing the projection operator on the null space.

Le aconade e fo o n' e on

$$X_{\mathbf{k}+} := X_{\mathbf{k}} - X_{\mathbf{k}}$$

$$X - AA$$

 $e e A \rightarrow e d o n$ nd c o e n

en $-X_{\mathbf{k}}$ con ele o $P_{\mathbf{null}}$ con ele o ne edec yo yoo n non ne pelen on fo $P_{\mathbf{null}}$ — -A AA $^{\dagger}A$ ee ele on o cope elene zed ne el AA † de file por on lo ele ele elene zed ne ele pon ne elecope y ele elene zed ne ele pon ne elecope y ele elene zed ne ele pon ne elene ele pon ne elene ele pon on y of elene zed ne ele pon ne elene elecope o on y of elene elene pon on y of elene pon y of elene pon on y of elene pon y of elene pon y of elene pon y of elene pon on y of elene pon y of ele

VIII.3 An iterative algorithm for computing a square root of an operator.

Le \deg e n e on o con c o A nd A e e A fo p c y e f d o n nd non ne e de n e ope o e con de e fo o n e on

$$Y_{I+} = Y_I - Y_I X_I Y_I$$
$$X_{I+} = -X_I - Y_I A$$

$$Y = -A$$

$$X = -A$$

VIII.4 Fast algorithms for computing the exponential, sine and cosine of a matrix

e e ponen of o nope o a e ane nd coane f nc on e o only e o o e conside ed nony c c a of ope o a A ano e case of e lene zed noe e

X Co p $^{\prime}$ n F(u) n e e e $^{\circ}$ e $^{\circ}$

n a ec on e de a e f a d p e l o fo co p nl e e an n n e y d e en ef nc on nd a ep e en ed n e e a An po n e p e a e on e p op l on of anl e of p on of non ne eq on a O n e c pp o c o e e a no e e e pec de nle of pp c on of a l l o

IX.1 The algorithm for evaluating u²

, we see that the second of t

$$\mathbf{j} - P_{\mathbf{j}}$$
 $\mathbf{j} \in \mathbf{V}_{\mathbf{j}}$

node odecope e e e e "eexopc e e

$$- \prod_{\mathbf{n}} \frac{\mathbf{j} \mathbf{x}^{\mathbf{n}} \mathbf{h}}{\mathbf{j}} P_{\mathbf{j}} - P_{\mathbf{j}} = \prod_{\mathbf{j}} \frac{\mathbf{j} \mathbf{x}^{\mathbf{n}}}{\mathbf{j}} P_{\mathbf{j}} - P_{\mathbf{j}}$$

 $-P_j$ $-P_j$ eo n

О

$$= \frac{\mathbf{j} \mathbf{x}^{\mathbf{n}}}{\mathbf{p}_{\mathbf{j}}} \qquad \mathbf{j} \mathbf{x}^{\mathbf{n}}$$

$$= \frac{\mathbf{j}}{\mathbf{p}_{\mathbf{j}}} \qquad \mathbf{j} \qquad \mathbf{j} \qquad \mathbf{n}$$

n e e e ano n e c on e een d. e en c e a $ndz'z \not - z'$. o e n e c p po e e need fo a o e n e n e of z e o l ac e

Befoepoceed not e e e contade ne pe of e note e e e fo o note p c e onta

nd and 7 eo nfo e

On deno n

$$d_{\mathbf{k}}^{\mathbf{j}} - \mathbf{j} = + d_{\mathbf{k}}^{\mathbf{j}} \mathbf{j}$$
 $d_{\mathbf{k}}^{\mathbf{j}} - \mathbf{j} = d_{\mathbf{k}}^{\mathbf{j}}$
 $d_{\mathbf{k}}^{\mathbf{j}} - \mathbf{j} = d_{\mathbf{k}}^{\mathbf{j}}$
 $d_{\mathbf{k}}^{\mathbf{j}} - \mathbf{j} = d_{\mathbf{k}}^{\mathbf{j}}$

e e e

of coe c en \mathfrak{p} c need o e \mathfrak{p} o ed \mathfrak{p} e ed ced f e \mathfrak{p} o \mathfrak{p} e

$$M_{\mathbf{WWW}}^{\mathbf{j};\mathbf{j}'}$$
 ' = $\mathbf{J}'^{=}$ \mathbf{Z}_{+} $\mathbf{J}_{\mathbf{K}}$ \mathbf{J}' \mathbf{J}' \mathbf{J}' \mathbf{J}' \mathbf{J}'

of N as a e of J n c n coe cen J , apopo on o en e of J e of J e of J or J and J e en e of ope on eq ed o e e e pp n J c connections and J or J or

IX.2 The algorithm for evaluating F (u)

Le ennneyd en efncon no de o decope e e e e e l'n

$$- \qquad \underset{\mathbf{j}}{\overset{\mathbf{j} \times \mathbf{n}}{\mathbf{x}}} \qquad P_{\mathbf{j}} \qquad - \qquad P_{\mathbf{j}} \qquad .$$

pndn efncon nelyo ee epon y e Pt de $\sqrt[7]{7}$ e $\sqrt[3]{4}$

efe ence³

., B A pe p a ep e en on of a oo ne ope o a D e a Y e n e a y

C e L een d nd "o n A f d p e poe lo fo p ce on SIAM Journal of Scienti c and Statistical Computing e Y e n e y ec n c "epo YALeB DO o" e

- . M "e e of f eq ency c nne deco pos on of les nd e e odes ec n c "epo e Co n ns e of M e c c ences Ne Yo n e s y
- Y Meye Lecc zen qe ezondee eze ez o zen qd e C MAD n e ze zD p ne
- . Y Meye no pe d'noce de 🎉 e enne a e l'e e a d'ope e a nw6ti3T