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intersection points are primary, a resonance zone is bounded by a Jordan curve and has an exit
and an entry set [15]. The area of each of these sets is the geometric flux, the area leaving
the resonance zone each iteration of the map. The images of the exit and entry sets and their
intersections completely define the transport properties of the resonance zone [16].

Thus, the beginning of a generalization of this theory to higher dimensions is the study
of the intersections of codimension-one stable and unstable manifolds for volume-preserving
maps.

As is well-known, a transversal intersection of stable and unstable manifolds is associated
with the onset of chaos, giving rise to the construction of Smale horseshoes. A widely used
technique for detecting such intersections is the Melnikov method. Given a system with a
pair of saddles, and a heteroclinic or saddle connection between them, the Melnikov function
computes the rate at which the distance between the manifolds changes with a perturbation.
The integral of the Melnikov function between two neighbouring primary intersection points
is the first-order term in the geometric flux [17, 18].

Most applications of the method are for two-dimensional maps and flows [19-21], though
Melnikov methods were developed for three-dimensional incompressible flows in [22], for
symplectic maps in [23], and for general s-dimension diffeomorphisms in [24]. In this latter
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homology of these curves undergoes bifurcations, and that these bifurcations strongly influence
the geometric flux.

2. Bad d:fin! M ppapdy ri or lig

Suppose fo : R” — R” is a diffeomorphism on »-dimensional Euclidean space. Often, we
will assume that f preserves a volume-forng , for example, the standard volume

L ¢ :dX]_ dXz dX~,.

For this form, f is volume-preserving when it has unit Jacobian, det(Df) = 1.

A smooth perturbation of f; is a family of functions f. = f (-, &) such that f(-,0) = f,
and f(x, &) is smooth in both variables. We first define a vector field on R” that will be used
to measure the motion of an invariant manifold.

DufiP Wpgor Hallpye trfidd). &l/}en aperTpaion fo o fo, seane Te /Zec Orpels
Xegoran pon*x  R” ki

d
X (x) = [_fa(y)] . (1)
de y=£7100)

Perturbation vector fields have some special properties. First, it is easy to see that X, is
independent of fy. Second, if one regards X, as a time dependent vector field (where time is
€), then y(e) = f,(x) is the solution of the initial value problem

dy

de = X, y(0) = fo(x).
e

Thus, if we let F_ = f ° fs‘l, then F represents the flow of the nonautonomous vector
field X,
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Fly r« 1. pis an adapted normal if the two rectangles shown have the same area.

Adapted normals can be thought of as a generalization of the gradient normal that one
gets from a first integral. Recall that the gradient of a smooth function J : R” — R is the
unique vector field, J, such that for all vector fields Y on R”,

iydJ =dJ(¥)= Y. )

If f has anondegenerate firstintegral, J = J = f, then equation (4) impliesthat f J,Y =
(J = f), f Y . Therefore, if the diffeomorphism f has a first integral J, then J is an
adapted vector field, provided it does not vanish on W.
If we are using the standard inner product on R”, then we can characterize adapted normals
more concretely.

retd Mp2. ge W - R’ peapmoofiy_nc Ton sepnes on Tie m/zaflan T gace W,
(lzljl}.k ppogery, , V =, n Vi Tie | Gnease inne% proe c*on R". ‘_hen nkaTyiep (3)yor all
recOfpelef Y I W — R” y ans onl y,yorallx W

Df(x) n(f(x)) = n(x).

In the general case W is not defined as the level set of an invariant, and it is not easy to
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therefore, since fe o . we have
fon
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C'rillary 7. gees Tie a“imp ionf o Tieorem 6,50sall » N
=1
9= 9° fo_w + ZV(XO) °© fo_k~
k=0
.nagerion, g lim, e 4o fy '(x) =0, Tien

oo oo

) =) v(Xo) o fit =Y (S Xo). (1)

k=0 k=0

These statements can be directly transcribed for adapted normals using proposition 4.

3.2. rfanyze dal in€spec Tonj

According to theorem 6 and corollary 7, we can compute the Melnikov function (9) in terms
of the first-order perturbation vector field Xo. For simplicity, we assume that the perturbation
vanishes on the invariant sets.

rh=tq M p8, ‘g ppoge | hap a cosumengion-one fasele connec ion W pe Ween Wo compacy”
nosmall h perothpac
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Following a standard Melnikov argument based on the implicit function theorem [28], we
conclude that if xo is a nondegenerate zero M, then near xg, the two manifolds W 4 ) and
Ws () intersect transversely. O

In a more general version of proposition 8, we would need to drop the condition that
Xo
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rh g Mp12, rheﬂ xyom @ i
d = @.

P, This is a straightforward calculation using lemma 10 and proposition 9. O

4.2. F_neamen 4l eomanj

Our goal in this section is to find a compact subset of the manifold—a fundamental domain—
that generates the entire manifold under iteration by fo. We will integrate the flux-form over the
fundamental domain to show that the algebraic flux crossing the separatrix is zero. From this
point on, we will concentrate on the three-dimensional case. To define the fundamental domain
we start with the concept of a proper loop.

Dufirt Wpgry orlthy ). ce*f R - Rgzpe a_syyeomo sphyym, ans W ayorwajss m/za fian >
‘v gace. ¢da Ta*a fmooTi -osean c_sre W i a pioperloopmn Wy po_nef a
k; gace W =\ int W) fia*y a Fapping ¥eg10n: v

M FelW)) intow ).

Similarly, a loop is proper for a backward invariant surface if it is a proper loop for the
map £ 1.

It is important to notice that not all invariant surfaces admit proper boundaries. A trivial
observation is the following proposition.

ryetd W pl3d..y i apiopesloop in W, Tien f( ) i alfo a propes loop. . n age1on,
Weiy=fOV).
The situation that we have in mind relates to the structure of stable and unstable manifolds.

Let a, b be compact, normally hyperbolic invariant sets of f, and W = Ws(a) = W= (b) a
saddle connection between them. A proper loop W is a submanifold of W that bounds a
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Fly r.5. Dynamics of G when £ is given by the Arnold circle map with £ = 0.9. The domain of
the figure is [0, 1.5] < [—0.5, 0.5].

Note that since R, and g both preserve , so does f.
The map f still has a rotational symmetry

foRi =Rsof (20)
for any constanty’  IR. This implies that when G has a saddle connection, so does f.

ri=iq 1}' rl6. hef gacey (15)are m/zarzan “nees(19).. nagerion, Wy ane Wy inéec™
on Tie mranan “Ciscle ¥

CCH={txy, ) = ,s=5s}

whese i an jxes poin g h.

Every point on the circles C( ) is fixed under g. The derivative of g at such points is

1 1
— %% +y) — =1y 0
25 25
=11 1
Delx,y, V=1 2l —pxy —@2+274?) 0
25 25

/
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Fly r. 6. The circle map A, ( )
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There are several such bifurcations in homology type of the zero contours as we vary the
parameters. For example, in the upper left panel, the homology type is (3, 1)— as each zero
contour moves from the bottom to the top of P, it lags the maps translation of by a full circuit
in three vertical transits. In the top-right panel there are two zero contours with the homology
(2,1). To elucidate these changes in homology, we show a bifurcation diagram in the space of
the parameters in figure 9. We have only found the three homology classes already mentioned.

Also shown in figure 9 are contours of the first-order geometric flux

1
Flux=—/|<b|
2 Jp

as a function of v and t. The flux is largest when v and 7 are both small, and it appears to
get extremely small as v approaches one. Note that there is a “valley’ in the flux contours near
both homology bifurcations.

Finally, we have also studied the perturbation

Pi(x,y, )= ((L+))( 2= %),0,0),
Py(x,y, )= (0,x°( 2= %),0), (28)
P3(x,y, )=1(0,0,5—3),

giving a perturbation vector field Xo = Py + P, + P3. We show the bifurcation diagram for the

zero contours of My, for W in figure 10. For this case, there appear to be only two homology
types, (1, 0) and (3, 1). Again there is a ‘valley’ in the flux near the bifurcation curve.
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