HAMILTONIAN SYSTEMS
A system of 2n, first order, ordinary differential
equations
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is a Hamiltonian system with »n degrees of freedom.
(When this system is non-autonomous, it hasn+1 2
degrees of freedom.) Here H is the Hamiltonian, a
smooth scalar function of the extended phase space
variables zand time 7, the 2n x 2n matrix J is called the
“Poisson matrix”, and 7 is the n x n identity matrix. The
equations naturally split into two sets of n equations for
i ¥ g y<!f gamvariables, <= (  p), asfollows.
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Here the n coordinates  represent the configuration
variables of the system (positions of the component
parts) and their canonically conjugate momenta p
represent the impetus associated with movement.
These equations generalize Newton’s third law:
F =,, =dp dt,tosystems (like particles in magnetic
fields, or motion in non-inertial reference frames)
where the momentum is not simply mass times velocity.
The Hamiltonian usually represents the total energy of
the system; thus if H(4, £) does not depend explicitly
upon # then its value is invariant, and Equations (1)
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variables (¥ 1), the canonical variables are replaced by
fields ( (¥ 1) p(¥ 1)) andthe partial derivativesin (1)
by functional or Frechét derivatives, so that
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The Hamiltonian functional H is the integral of an
energy density. For example, the wave equation has
the Hamiltonian H[ p] = [d¥3 (P +4%( ¥ )?).
Other nonlinear wave equations such as the integrable
nonlinear Schrédinger, Korteweg—delVries, and sine-
Gordon equations also have Hamiltonian formulations.
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