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approximation methods for solving partial di�erential and integral equations in higher

dimensions, where the ability to onstrut near optimal rational (or exponential) ap-

proximations to funtions of one variable is a key omponent.

Sine the seminal result in [21℄, it has been known that funtions with singulari-

ties may be e�iently approximated in the L∞
norm using proper rational funtions.

Indeed, the number of poles required to approximate a funtion with singularities is

diretly related to the sparsity of the funtion's wavelet oe�ients (see [16, Theorem

11.1℄). However, in ontrast to more traditional L2
-type methods (using e.g., wavelet

bases as in [2℄), the use of suh optimal L∞
-type approximations in numerial analysis

has been limited due to a lak of e�ient and robust algorithms.

Given a proper rational funtion f , we present an algorithm�whih we refer to as

the redution algorithm�to ompute, for a �xed number 20.8801 0J
30e
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many times. For example, in the ontext of solving Burgers' equation with visosity

ν = 10−5
and approximation tolerane ǫ = 10−9

, on the order of a million appliations

of the redution algorithm are performed.

For funtions with n poles resulting from intermediate omputations, the redution

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles. In our numerial experiments with the redution algorithm, we �nd that an

approximation error of ǫ ≈ 10−14
may be reliably obtained within double preision

arithmeti, even when the number of poles n is large and their spatial distribution is

highly lustered.

There is a signi�ant literature devoted to appliations of the AAK approah in

ontrol theory (f. [23℄), signal proessing (f. [8℄), and numerial analysis (f. [25,

27, 29, 5℄), to mention just a selet few. The reformulation of the AAK theory given

here ould be related to the approahes taken in [28℄, [20℄, and [10℄. However, as far

as we know, all of the AAK-type algorithms disussed in the literature require O (n3)
operations when applied to a rational funtion with n poles, and may require extended

preision arithmeti if high auray of the result is desired. In ontrast, our redution

algorithm requires only O (m2n) operations to �nd an optimal approximation with m
poles and ahieves high auray (ǫ ≈ 10−14

) using only double preision arithmeti.

We show in this paper that solutions of Burgers' equation with visosity ν require

only O (log ν−1) + O (log ǫ−1) poles for its rational approximation with an L∞
error of

size ǫ. Burgers' equation has been traditionally used to test the limits of new numerial

methods sine the solution develops sharp transition regions that need to be aptured

adaptively. Coneptually, the two losest adaptive methods are those in [24℄ and [2℄.

While in [2℄ adaptivity is ahieved by adding wavelet sales when needed, the algorithm

in [24℄ ahieves spetral auray by aTd
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smaller number of poles. As mentioned earlier, our redution algorithm is based on

a theorem of Adamyan, Arov, and Krein ([1℄), whih onerns the approximation of

a periodi funtion f , essentially bounded on the unit irle ∂D, by a meromorphi

funtion r(z) (z = e2πix) ontaining a spei�ed number of poles in the unit disk. We

limit our presentation to rational funtions f taking real values on ∂D. This ase turns
out to be partiularly important, as it allows us to develop a pratial algorithm based

on approximating the Fourier series oe�ients of f with positive index. More general

funtions f may be dealt with by using the tehniques in
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The fat that there are exatly m zeros in the unit disk, orresponding to the

indexm of the on-eigenvalue λm, is a onsequene of the AAK theory. As shown

in Setion 4.1 (see equations (4.8)), the key to the high auray of evaluating

the funtion v(z) is the relationship

(2.4) v (γi) = ui/
√
αi, i = 1, . . . , n,

whih, together with the n poles 1/γi, uniquely determines v(z).
Step 3: Find the oe�ients βi of g(z) by solving the m×m linear system,

(2.5)

m∑

i=1

1

1 − ηiηj

βi =
n∑

i=1

αi

1 − γiηj

, j = 1, . . . , m.

Denoting ‖f − g‖∞ = supx∈[0,1] |f(e−2πix) − g(e−2πix)|, the resulting rational approxi-

mation g(e2πix) satis�es ‖f−g‖∞ ≈ ǫ and, thus, is lose to the best L∞
-error ahievable

by rational funtions with no more than m poles in the unit disk (see also [25℄ for a

disussion of optimal rational approximations).

Remark 1. In Step 3, we solve for the oe�ients βi in O (m2) operations by exploiting

the struture of Cauhy matries (see [11, 7℄). We note that suh a solver may require

quadruple preision if the overall desired approximation error ǫ is smaller than ≈ 10−10
.

However, sine m = log (ǫ−1) is small, Step 3 for �nding oe�ients βi does not impat

the overall speed of the algorithm even if performed in quadruple preision.

Remark 2. In appliations where the funtion f (e2πix) has singularities or sharp tran-

sitions, the poles γj in the rational representation of f (e2πix) may be loated very lose

to the unit irle (and/or to eah other). In suh ases, it is advantageous to maintain

the poles in the form γj = exp (−τj), sine they are well separated on a logarithmi

sale. Importantly, the redution algorithm omputes the new poles

j =exp ( −
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(r < 1). This estimate shows that, for auray ǫ, we may reasonably expet O (log ǫ−1)
terms in our approximation. In fat, we have observed this behavior in our numerial

experiments.

Let us now brie�y disuss the algorithmi aspets behind e�ieny and auray of

solving steps 1-3 above.

2.2. Aurate omputation of on-eigenvalues/eigenvetors. For Step 1, we use
a reent algorithm developed and analyzed in [?℄ for omputing on-eigenvalues of

Cauhy matries with high relative auray, whih we brie�y desribe in this setion.

It is well-known that standard eigenvalue algorithms ompute an approximate on-

eigenvalue

̂
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using (2.4) to rewrite (2.3) as

n∑

i=1

αi v (γi)

1 − γiz
= λmv(z),

we see that
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to the known eigenvalues β1, . . . , βm−1, one by one. We then orthogonalize these m− 1
vetors using the stabilized Gram-Shmidt proedure, thus yielding a basis q̂1, . . . , q̂m−1

for the invariant subspae span {q1, . . . , qm−1} = span {q̂1, . . . , q̂m−1}. Finally, we use

simultaneous inverse iteration applied to q̂1, . . . , q̂m−1, q, where q is hosen randomly.

Notie that eah step of this proess8ess

1
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depend on the timestep t, the number Mt of quadrature nodes in time, and the number

of quadrature nodes Mx used in spae to disretize the onvolution kernels. From the

rapid deay of the periodi heat kernel,

Kν(x, t) =
1√
4πνt

∑

k∈Z

e−(x+k)2/(4νt),

where ν is the visosity parameter in (3.1), it follows that φl
p and ψl

p are loalized to a

O
(√
νt
)
neighborhood of x = 0 (see Setion 4.2 for details).

We assume that the initial funtion u(x, 0) = u0 (x) is given as a periodi rational

funtion of the form

u0(x) =

M0∑

j=1

αj

e−2πix − γj
+

M0∑

i=1

αj

e2πix − γj
+ α0,

and that this representation is nearly optimal. We then solve the system of equations

(3.2) by approximating eah funtion ul using the redution algorithm. We obtain, via

�xed point iteration applied to (3.2) and the redution algorithm, rational funtions

ul(x) of the form,

(3.3) ul(x) =

Ml∑

j=1

αj,l

e−2πix − γj,l

+

Ml∑

j=1

αj,l

e2πix − γj,l

+ α0,

whih solve (3.2) to a spei�ed level of preision, and have a (near) optimal number of

poles.

More spei�ally, given u
(m)
j ≈ uj(x), 1 ≤ j ≤ Mt, at iteration m, we use (3.2) to

de�ne the next iterates u
(m+1)
l (x) for l = 1, . . . ,Mt,

u
(m+1)
l (x) =

Mx∑

p=1

λl
pu0
(
x− φl

p

)

(3.4)

+
Mx∑

p=1

λl
p,j

l−l∑

j=1

{(
u
(m+1)
j

(
x− ψl

p

))2
+

Mt∑

j=l

de�ne the next iterates
p

m )
j � − ψl





SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 12



SOLVING BURGERS' EQUATION USING RATIONAL APPROXIMATIONS 13

0.49996 0.49998 0.50000 0.50002 0.50004

-0.5

0.5

Figure 3.3. Solution u(x, t) at time t = .4, loalized about the transition
region (1/2 − 10−5, 1/2 + 10−5). Note the absene of any Gibbs-type phe-
nomena.
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Suppose f ∈ L∞
has the
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we alulate from (4.4)

∞∑

j=1

(
M∑

m=1

αmγ
i+j−2
m

)
vj =

M∑

m=1

αmγ
i−1
m

∞∑

j=1

γj−1
m vj

=

M∑

m=1

αmγ
i−1
m v (γm) = σwi.

Now multiplying both sides of the last equation by zi−1
and summing, we obtain

(4.6)

M∑

m=1

αm

1 − γmz
v (γm) = σz−1w(z−1).

Similarly, from (4.5), we have

∞∑

j=1

(
M∑

m=1

αmγm
i+j−2

)
wj =

M∑

m=1

αmγm
i−1

∞∑

j=1

γm
j−1wj

=
M∑

m=1

αmγm
i−1
(
γm

−1w
(
γm

−1
))

= σvi.

Finally, multiplying by zi−1
and summing, we arrive at

(4.7)

M∑

m=1

αm

1 − γmz
γm

−1w
(
γm

−1
)
= σv(z).

Hene, for a funtion f of the form (4.3), the funtions v and w in (4.2) turn out to

be rational and fully determined by their values at the poles of f . Taking z = γn and

z = γn in equations (4.6) and (4.7), respetively, we obtain

M∑

m=1

αm
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Let us de�ne the vetors p and q with entries pm = α
1

2

mv (γm) , qm = αn
1/2γm

−1w (γm
−1),

and the positive de�nite matrix C with entries

Cmn =
α

1

2

mαn
1

2

1 − γmγn
.

Then the above equations are equivalent to

C p = σq,

C q = σp,

whih may be redued to a on-eigenvalue problem for σ > 0, see [15, Setion 4.6℄. One

simple way to see this and obtain an equation of the form (2.2) is by de�ning x = p+ q.
If x = 0, then iq = ip and hene

C(ip) = σip.

If x 6= 0, we have

Cx = σx

and, in both ases, we obtain a on-eigenvalue problem for the matrix C.

4.2. Disretization of Burgers' equation. We rewrite the equation (3.1) in semi-

group form (see, e.g., [14, 17, 18, 3℄)

(4.9) u(t) = eνtLu(0) +

ˆ t

0

eν(t−τ)LN(u(τ))dτ,

where u(t) denotes the funtion u(·, t). The operator L, Lu(x) = uxx, represents the

linear part of (3.1) while the operator N , N(u) = 1/2 (u2)x, represents the nonlinear

part. The ation of the operator eνtL
on a funtion f is given by

(
eνtLf

)
(x) =

ˆ
1

2

− 1

2

Kν(y, t)f(x− y)dy, with Kν(y, t) =
1√
4πνt

∑

k∈Z

e−(y+k)2/(4νt).

To disretize equation (4.9) in time, we use the approximation

N (u(τ)) ≈
Mt∑

j=1

Rj(τ)N (u (τj)) , τ ∈ [0, t]

where {τj}Mt

j=1 denote the Gauss-Legendre nodes on the interval (0, t), and Rj(τ) denote
the Legendre interpolating polynomials for these nodes, i.e.,

Rj(τm) = δjm, for j,m = 1, . . . ,Mt.

Taking t = τl in (4.9), we obtain the semi-disrete system of equations

(4.10) ul = eντlLu0 +
Mt∑

j=1

(
ˆ τl

0

eν(τl−τ)LRj(τ)dτ

)
N (uj) , 1 ≤ l ≤ Mt,

where ul = ul(x) denote the omputed values of u at time t = τl and u0 = u(x, 0).
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For the spatial disretization, using N(u) = 1/2 (u2)x and in
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