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Abstrat. We introdue a new omputationally e�ient algorithm

for onstruting near optimal rational approximations of large (one-

dimensional) data sets. In ontrast to wavelet-type approximations,

these new approximations are e�etively shift invariant. We note that

the omplexity of urrent algorithms for omputing near optimal ratio-

nal approximations prevents their use for large data sets.

In order to obtain a near optimal rational approximation of a large

data set, we �rst onstrut its intermediate B-spline representation.

Then, by using a new rational approximation of B-splines, we arrive

at a suboptimal rational approximation of the data set. We then use a

reently developed fast and aurate redution algorithm for obtaining

a near optimal rational approximation
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in ontrast to wavelet deompositions, rational funtions are losed under

translations and, thus, optimal rational approximations are shift invariant.

Indeed, shifting an optimal rational approximation yields the optimal ap-

proximation of the shifted funtion or data.

Our rational representations are optimal in the sense that, for a given

auray of approximation, the number of poles is minimal. We say that

the approximation is �near optimal� if, instead of the desired auray ǫ, our
algorithms yield auray ǫ′

, where ǫ′
is slightly smaller than ǫ. In suh ase

the number of poles may not be minimal in the strit sense (we note that we

have an a posteriori hek to identify suh situation, if needed). We use the

term �suboptimal�, if we know that the number of poles de�nitely exeeds

the optimal number (for a given auray).

For funtions given analytially or for funtions desribed by a relatively

small number of samples, there are several methods for obtaining their near

optimal rational approximations [5, 6, 7℄. For a large data set these methods

are impratial due to their omputational omplexity. On the other hand,

omputing a wavelet deomposition of a large data set does not present a

di�ulty sine its omputational ost is linear in the number of samples; we

use these fats in our approah.

We �rst ompute a B-spline representation of the data, whih provides a

simple and e�ient method for a transition to a suboptimal rational repre-

sentation. For this purpose, we onstrut a new rational approximation of

B-splines, where the poles are arranged on a retangular grid aligned with

the loation of spline knots. We then split the data into large segments, and

ompute suboptimal rational approximations for eah segment. Finally, we

ompute a near optimal rational approximation using a reently developed,

fast and aurate algorithm in [10℄.

Although the example provided here is ompression of audio reordings,

the algorithm may be used to ompress and analyze other types of signals,

e.g., signals obtained by ontinuous, global seismi monitoring. In partiular,

we view ompression via near optimal rational approximations as the �rst

step in signal analysis sine the poles arry frequeny and time information.

As shown in [6℄, poles of near optimal rational approximations onentrate

near the singularities of funtions. For signals, this orresponds to loations

of rapid hange, suh as ourring when a piano key is struk or at wave

arrivals in seismi reordings. The loation of the poles also arries infor-

mation about loal frequeny ontent of the signal in a manner similar to

wavelets, i.e., the logarithmi distane of these loations from the real axis

orresponds to wavelet sales.

We start in Setion 2 by providing the bakground information on the

key existing algorithms that failitate the development of our new approah.

Next, in Setion 3, we onstrut a rational approximation (with speial prop-

erties) of a B-spline to be used in intermediate omputations. Then, in Se-

tion 4, we desribe in detail the algorithm for onstruting near optimal
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Following [6℄, from (1) we obtain the rational representation

f(x) = −2Re




M∑

j=1

wj
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ǫ. In ontrast to standard algorithms, the on-eigenvalues (and on-

eigenvetors) are omputed with high relative auray in O
(
M2M0

)

operations.

• Find all the roots inside the unit disk of the funtion

v(z) =
1

σM

M0∑

j=1

√
dj uj

1 − µjz
.

Note that there are exatly M roots νl of v(z) inside the unit disk

based on results from [3℄.

• Finally solve for the residuals rl of r(z) by solving the M × M linear

system

M∑

j=1

rj

1 − νjνk

=

M0∑

j=1

dj

1 − µjνk

.

Using this algorithm, we obtain ‖f −r‖ ≈ σM , whih provides a near optimal

representation of f(z) using only M pairs of onjugate-reiproal poles, νl

and ν−1
l . The omputational
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Given a uniformly sampled 1-periodi funtion f , we seek the oe�ients

αj suh that

(7) f

(
k

2N

)
=

2N∑

j=0

αjβm(k − j), k = 0, . . . , 2N.

The algorithm in [4, 12℄ rapidly omputes the oe�ients αj in (7) using

the Fast Fourier Transform (FFT). It performs the following steps:

• Set fk = f( k
2N

) and ompute, for k = 0, . . . , 2N ,

f̂k =

2N∑

n=0

fne
−2πi
2N+1

kn

using the FFT.

• Compute, for k = 0, . . . , 2N ,

α̂k =
f̂k

am( k
2N+1 )

.

• The B-spline oe�ients are now obtained via the FFT as

αj =
1

2N + 1

2N∑

n=0

α̂ne
2πi

2N+1
jn, j = 0, . . . , 2N

This algorithm requires O(N log N) operations. The details may be found

in the appendix in [12℄.

3. Rational representation of B-splines

In this setion we onstrut rational approximations of B-splines. In our

onstrution we fore the real parts of the poles to be integers l ∈ Z, so that

the poles are aligned with the knots of the B-spline. As we explain below,

this redues the ost of intermediate omputations.

Spei�ally, we are looking for a suboptimal rational approximation of the

form (5), with poles l ± iτk, so that

(8)

∣∣∣∣∣∣∣
βm(x) + 2

m+1

2∑

l=− m+1

2

R∑

k=1

uk,l(x − l) − vk,lτk

(x − l)2 + τ2
k

∣∣∣∣∣∣∣
≤ ǫ,

where the number of rows of poles, R, will be hosen later. We note that

the onstraint on the real part of the poles arranges them on a retangular

grid (see Figure 2).

We start by omputing a near optimal rational approximation of a B-spline

following the approah in [6℄. For a given m, we evaluate β̂ at a su�ient

number of samples; spei�ally for m = 7 we have

(9) hn = β̂m

( n

32

)
, n = 0, 1, . . . , 800,
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where

(10) β̂m(ξ) =

(
sin πξ

πξ

)m+1

,

and use the algorithm in Setion 2.1 to onstrut a near optimal rational

approximation.

An example of a near optimal rational approximation of a B-spline of

degree m = 3 may be found in [6℄. As observed in that paper, the poles

onentrate towards the loations of the knots of the B-spline sine its third

derivative is disontinuous at these points. In our appliation we would like

to use a higher degree B-spline to lessen the impat of disontinuities and

obtain fewer poles. In Figure 1 we present the results for a near optimal

approximation of a 7th degree B-spline using the same approah as in [6℄.

Sine the poles, tj ± isj , appear in omplex onjugate pairs, in Figure 1 we

display (on a log10 sale) only those with negative imaginary part.

We then seek a suboptimal rational representation of β(x) with poles in

the loations indiated in (8) and use the near optimal approximation to

selet the parameters τk in (8). Taking into aount that the poles loser to

the real line are responsible for the high frequeny ontent of the represen-

tation, whereas those furthest away apture the lower frequeny ontent, we

limit the range for the imaginary parts of our suboptimal poles by using the

orresponding maximum, s+, and minimum, s−, of the near optimal poles.

We selet three rows of poles, i.e., R = 3 in (8), by hoosing imaginary parts

τ1 = s+, τ3 = s−
, and

τ2 = e
1

2
(log τ1+log τ3).

The real part for all of these poles are at loations l, where l = −m+1
2 , . . . , m+1

2
(reall that m is odd). The hoie of three rows of poles is based on the de-

gree of the B-spline and our auray requirements (see Figure 2(b)) and

may be di�erent in other appliations.

One the loation of poles is �xed, the
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the optimization pakage CVX [9℄. The resulting absolute error is shown in

Figure 2(b).
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4. Near optimal rational approximations

We now brie�y desribe the key steps
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ompute the B-spline oe�ients for eah setion of the signal. One

the B-spline oe�ients for eah setion are found, by adding om-



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 12

the support of both segments, we preserve the overall auray of

the merged approximation. In our experiments, we redue the set of

poles
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parts,

fk = f+
k + f−

k + f local
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)

+
∑

tj−xk≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)
(16)

+
∑

|xk−tj |<αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)
,

and evaluate f+
k , f−

k and f local
k separately, where that of f local

k proeeds

diretly. The ondition on the fator α is deribed below (α = 5 is a typial

hoie). It remains to desribe an algorithm for evaluating f+
k sine f−

k is

omputed in a similar manner.

We have

f+
k =

∑

xk−tj≥αs

(
uj + ivj

xk − tj − isj

+
uj − ivj

xk − tj + isj

)

= 2
∑

xk−tj≥αs

ˆ ∞

−∞
e−ey(xk−tj)+y (uj cos(eysj) − vj sin(eysj)) dy.(17)

The e�etive range of integration in (17) is �nite due to the exponential (y →
−∞) and super-exponential (y → ∞) deay of the integrand. Our hoie

of the fator α prevents an exessive osillatory behavior of the integrand

within that range. In order to obtain an exponential approximation of the

form

(18) f+
k =

∑

tj≤xk

L∑

l=1

λl,je
−µl(xk−tj), αs ≤ xk − tj ≤ T, Re(µl) > 0,

(where T is su�iently large to aommodate a given segment of the signal),

we may now proeed as in [5, 7℄. Indeed, we disretize the integral in (17) to

any desired preision and use an appropriate algorithm to redue the number

of terms.

In (18) we may swith the order of summation and, as a result, onstrut

a reursion (see [13, 5℄). Denoting

qk,l =
∑

tj≤xk

λl,je
−µl(xk−tj),

we obtain

qk+1,l =
∑

tj≤xk+1

λl,je
−µl(xk+1−tj)

= e−µl(xk+1−xk)qk,l +
∑

xk<tj≤xk+1

λl,je
−µl(xk+1−tj).

This reursion leads to an O(L · K) + O(L · M) algorithm for omputing f+
k .
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5. Numerial Examples

We have omputed several approximations using the algorithm from Se-

tion 4. Sine one of the potential appliations for this method is a ompres-

sion sheme, we illustrate our algorithm using a large data set from a high

quality audio reording.



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 15

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 16

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

5

−10

−9

−8

−7

−6

−5

−4

−3



NEAR OPTIMAL RATIONAL APPROXIMATIONS OF LARGE DATA SETS 19

[12℄ B. A. Jones, G. H. Born, and G. Beylkin. A Cubed Sphere Gravity Model for Fast

Orbit Propagation. AAS/AIAA Spae�ight Mehanis Meeting, Advanes in the As-

tronautial Sienes, 134:567�584, 2009.

[13℄ N. Yarvin and V. Rokhlin. An improved fast multipole algorithm for potential �elds

on the line. SIAM J. Numer. Anal., 36(2):629�666 (eletroni), 1999.

Department of Applied Mathematis, University of Colorado, Boulder,

CO 80309-0526


