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Abstract Persistent activity in neuronal populations has
been shown to represent the spatial position of remembered
stimuli. Networks that support bump attractors are often
used to model such persistent activity. Such models usu-
ally exhibit translational symmetry. Thus activity bumps
are neutrally stable, and perturbations in position do not
decay away. We extend previous work on bump attractors
by constructing model networks capable of encoding the
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produce reliable bumps is essential for understanding the
mechanism behind spatial working memory.

Models that can store a continuous range of spatial loca-
tions typically possess solutions that are neutrally stable
(Amari 1977; Seung 1996; Brody et al. 2003). Due to the
neutral stability of such attractors, perturbations that change
the location of a bump of activity do not decay away (Amari
1977; Camperi and Wang 1998; Compte et al. 2000). Aside
from experimentally-introduced distractors in spatial work-
ing memory experiments (Miller et al. 1996), cue memories
can also be degraded by internal variability within corti-
cal networks (Faisal et al. 2008). Stochastic models show
that such variability causes bump attractors to wander dif-
fusively, due to their inherent neutral stability (Camperi and
Wang 1998; Compte et al. 2000; Laing and Chow 2001;
Kilpatrick and Ermentrout 2013). Psychophysical studies
show that errors made recalling remembered spatial loca-
tions scale roughly linearly with delay time, suggesting
the remembered location may diffuse in time (White et al.
1994; Ploner et al. 1998). Also, heterogeneities in the spa-
tial structure of the underlying neuronal network can further
degrade the relation between the stored memory and the ini-
tial cue (Seung 1996; Renart et al. 2003; Itskov et al. 2011;
Hansel and Mato 2013). One solution to this problem is
to structure the spatial arrangement of excitatory synapses
(Kilpatrick and Ermentrout 2013; Kilpatrick et al. 2013)
to make networks robust to dynamic and static paramet-
ric perturbations. Thus, the spatial organization of synaptic
architecture can play a major role in accurately encoding
stimuli for future recall.

To explore the relation between network architecture and
the neural computation underlying working memory, we
consider bump attractor networks capable of encoding cue
certainty. We define certainty as the likelihood that the pre-
sented cue was faithfully communicated to the network gen-
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2 Bump attractor networks

Bump attractor networks were originally developed as gen-
eral models of recurrent neuronal circuits that can sup-
port spatiotemporal patterns of activity (Wilson and Cowan
1973; Amari 1977). Since then they have been used to repre-
sent activity subserving spatial working memory (Camperi
and Wang 1998; Compte et al. 2000) and visual orientation
processing (Ben-Yishai et al. 1995). We consider a spatially
organized neural field model where the positions of neurons
correspond to their preferred stimulus orientation. We focus
on a ring architecture, but we believe these ideas will extend
to more general models.

Consider a single population which incorporates local
excitation and broadly tuned inhibition (Amari 1977; Ben-
Yishai et al. 1995; Ermentrout 1998)

∂u(x, t)

∂t
= −u(x, t) +

∫ π

−π
w(x − y)

×f (u(y, t))dy

+ I (x, t). (2.1)

Here u(x, t)
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We note that in the limit of fast inhibition, τ
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Fig. 1 Stationary bump
solutions. a Blue and black
indicate neutrally stable
solutions for U(x) while red
indicates unstable solutions that
are attracted to the boundary of
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Fig. 2 The integration of
constant external input I (t) = I0
lasting for T0 time units by the
single population network
Eq. (2.1). a The amplitude of the
bump in response to a current
injection of the form Eq. (3.7). b
Bump solution as t → ∞

where, for convenience, we use the normalized stochastic
variable ξA(t) = ξ(t)/A0
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Note that since L∗ϕe(x) = L∗ϕo(x) = 0, we use Eq. (3.14)
and the general weight function given by Eq. (2.8) to find
that

ϕo(x) = f ′(U(x)

N∑

k=
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Fig. 5 Amplitudes of the
stationary bump solutions
U(x) = A0 + A1 cos x for
varying w̄ values as per equation
Eq. (4.2). a A0 as a function of
w̄. b A1 as a function of w̄. Other
values used: s = 2

π , w̄ee = 1

we conclude that one of the major differences between net-
works with one and two populations is that it is possible
to destabilize stationary bumps with sufficiently slow inhi-
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field models. In particular, we examine the stability of sta-
tionary bump solutions of the form U(x) = A cos xwhen

the firing rate function has the form given in Eq. (2.3).
Hence,

(λ + 1)A1 =

⎧
⎪⎨

⎪⎩
A1sw1

[
π
2 − cos−1

(
1

sA

)
− 1

sA

√
1 −

(
1

sA

)2
]

, for sA > 1,

A1sw1
π
2 , for sA ≤ 1,

(A.7)

(λ + 1)B1 =

⎧
⎪⎨

⎪⎩
B1sw1

[
π
2 − cos−1

(
1

sA

)
+ 1

sA

√
1 −

(
1

sA

)2
]

, for sA > 1,

B1sw1
π
2 , for sA ≤ 1,

(A.8)

and Ak = Bk = 0 for k ̸= 1 and A0 = 0. Therefore,
only sin x and cos x are eigenfunctions of the linearized
system. All other Fourier modes cos
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and, for the v equation

V (x) = w̄ei

∫ π

−π
(1 + cos (x − y))f (U(y))dy,

so that

M0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2sw̄eiA

[

1 −
√

1 −
(

1
sA

)2
]

+ 2w̄ei cos−1
(

1
sA

)
, for sA > 1,

2sw̄eiA, for sA ≤ 1,

M1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sAw̄ei

[
π
2 − cos−1

(
1

sA

)
− 1

sA

√
1 −

(
1

sA

)2
]

+ 2w̄ei

√
1 −

(
1

sA

)2
, for sA > 1,

sAw̄ei
π
2 , for sA ≤ 1.

(B.5)
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Eq. (B.9), we see that when using the weight functions in
Eq. (2.5) we have the system

(λ + 1)A0 = w̄ee

∫ π

−π

(A0 + A1 cos y + B1 sin y)f ′(U(y))dy

−w̄ie

∫ π

−π
(M0 + M1 cos y + N1 sin y)dy,

(λ + 1)
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