ON THE REPRESENTATION OF OPERATORS IN BASES OF COMPACTLY SUPPORTED WAVELETS*

G. BEYLKIN[†]

A str ct This paper describes exact and explicit representations of the di erential operators, $n = 1 \ 2 \cdots$, in orthonormal bases of compactly supported wavelets as well as the representations of the Hilbert transform and fractional derivatives. The method of computing these representations is directly applicable to multidimensional convolution operators.

Also, sparse representations of shift operators in orthonormal bases of compactly supported wavelets are discussed and a fast algorithm requiring (log) operations for computing the wavelet coe cients of all circulant shifts of a vector of the length $= 2^n$ is constructed. As an example of an application of this algorithm, it is shown that the storage requirements of the fast algorithm for applying the standard form of a pseudodi erential operator to a vector (see [G. Beylkin, R. R. Coifman, and V. Rokhlin, Comm. Pure. Appl. Math., 44 (1991), pp. 141{183]) may be reduced from () to (log²) signi cant entries.

ey ords wavelets, di erential operators, Hilbert transform, fractional derivatives, pseudodi erential operators, shift operators, numerical algorithms

AMS MOS s ect c ssi c tions 65D99, 35S99, 65R10, 44A15

1. Introduction. n D rec e n od ced co p c y ppo ed e e1. Introduction. If D'ecce hod ced copcy ppo ed ee c poed o e ey ef nn e c ny n ppe e nd exact and explicit ep e en on of e e c cope o de e' e n fo f'ec no ono e e of copcy ppo el ee e ope en n $\mathbf{O} \mathbf{N}$ of \mathbf{N} to fo cop n' e ee concen of \mathbf{N} c c n f of eco of e en \mathbf{N} . " o to ppe eony copp e enon nd dfo fore o nce per e oo n nd dfo for enon nd dfo Meye 'fo o n' fon eff dof claichoof, de fc n de op, fl ded oo f, d copp d non

ddade fon fo_i

econd e comp e e non nd d fo nof e f ope o ope o po n n p c c pp c on of e e ec e e e co c en e no f n n n ce e non nd d nd nd d fo n of ope o e e e pendeyo co pe no ní e e epe en on co pen e fo е c of f n, nce e e e p n on of f of e o o of c e y e o ned y p y n e f ope o d ec y o e co c en of e o n e p n on e co c en fo e f ope o y e o ed n d nce nd ed needed

needed $ce \neq oee \neq ep c$ inne n c p ene of e f ope o in y $\overline{e}e$ p o ed depend on e pp c on nd in y $\overline{e}e$. I fo d n nd c ed $\overline{\sigma}e_{-}e pe en ne pe of c n pp c on nn e c$ $n y O <math>\overline{e}$ n e e e on y N of 2 N distinct e e con c en n e decorpo on of N c c n f of eco of e en N. n e con cn O N of N o info comp n of e e con c en n o info e o e o e eq e en of e f o info pp y n e nd d fo e of pe dod e en ope o o eco y X $\overline{e}e d cod f o = O N of N$ for a for preded even ope o o eco $\mathbf{A}_{\mathbf{N}}$ vere d ced for $\mathbf{A}_{\mathbf{N}}$ o \mathbf{N} o \mathbf{N} o \mathbf{O} o \mathbf{O} o \mathbf{N} in c n en e

2. Compactly supported wavelets. n ec on e – e y e e e o ono $\mathbf{A}_{\mathbf{h}}$ — e of co $\mathbf{A}_{\mathbf{h}}$ c y ppo ed e e nd e o no on o e de e efe o

e o ono $\mathbf{A}_{\mathbf{n}}$ – of co $\mathbf{A}_{\mathbf{p}}$ c y ppo ed e e of $\mathbf{L}^2 \mathbf{R}$ fo $\mathbf{A}_{\mathbf{p}}$ d \mathbf{y} ed on nd n on of n['] efnc on **x**

$$_{j,k}$$
 x $^{-j/2}$ $^{-j}$ x k ;

efncon $\mathbf{X}_{\mathbf{x}}$ compronge c n'fncon $\mathbf{X}_{\mathbf{x}}$ nd fy efo n'e on. e e j;k 2 Z e e f nc on

$$\mathbf{x} = \mathbf{p} - \mathbf{x}^{1} \mathbf{h}_{k} \mathbf{x} \mathbf{k};$$

$$\mathbf{x} = \mathbf{p} - \mathbf{x}^{1} \mathbf{g}_{k} \mathbf{x} \mathbf{k};$$

е е

$$\mathbf{g}_{k}$$
, $^{k}\mathbf{h}_{L-k-1}$; \mathbf{K} , ; ; \mathbf{L} ;

nd

$$z_{+\infty}$$
 ' x dx' :

M n n Appen n dd on efnc on

$$z_{+\infty}$$

 $x x^m dx$, ; m , ; ; M :

where

$$\mathbf{P} \mathbf{y}, \mathbf{k} = 0 \quad \mathbf{k} \quad$$

and \mathbf{R} is an odd polynomial such that

Py
$$y^M R_{\frac{1}{2}}$$
 y fo y ;

and

$$p_{0 \le y \le 1} \mathbf{P} \mathbf{y} \quad \mathbf{y}^M \mathbf{R} \frac{1}{2} \mathbf{y} < {}^{2(M-1)}:$$

3. The operator d=dx in wavelet bases. n econ econ c e non nd d fo \mathbf{A}_1 f e ope o $\mathbf{d}=\mathbf{dx}$ e non nd d fo \mathbf{A}_1 ep e en on of n ope o \mathbf{T} c n of p e

$$\mathbf{f}, \mathbf{f} \mathbf{A}_j; \mathbf{B}_j; \mathbf{j}_j \mathbf{g}_{j \in \mathbf{Z}}$$

c n'on e $\neg \mathbf{p}$ ce \mathbf{V}_j nd \mathbf{W}_j

$$\mathbf{A}_{j}, \mathbf{W}_{j} \mid \mathbf{W}_{j};$$
$$\mathbf{B}_{j}, \mathbf{V}_{j} \mid \mathbf{W}_{j};$$
$$\mathbf{b}_{j}, \mathbf{W}_{j} \mid \mathbf{V}_{j};$$

 $\begin{array}{c} {}_{j}, \ \mathbf{v}_{j}: \ \mathbf{v}_{j}, \\ \text{e ope o } \mathbf{f}\mathbf{A}_{j}; \mathbf{B}_{j}; \ \mathbf{j}_{j}\mathbf{g}_{j\in \mathbf{Z}} \text{ e de ned } \mathbf{A}_{j}, \ \mathbf{Q}_{j}\mathbf{T}\mathbf{Q}_{j}' \mathbf{B}_{j}, \ \mathbf{Q}_{j}\mathbf{T}\mathbf{P}_{j}' \text{ nd } \mathbf{I}_{j}, \\ \mathbf{P}_{j}\mathbf{T}\mathbf{Q}_{j}' \text{ e e } \mathbf{P}_{j} \text{ e p o ec on ope o on e } \mathbf{p} \text{ ce } \mathbf{V}_{j} \text{ nd } \mathbf{Q}_{j}, \ \mathbf{P}_{j-1} \mathbf{P}_{j} \\ \text{e p o ec on ope o on e } \mathbf{p} \text{ ce } \mathbf{W}_{j} \\ \text{e e e e n } \underbrace{\mathbf{P}_{1} \ \mathbf{i}_{l}' \ \mathbf{j}_{j}' \ \mathbf{j}_{l}' \ \mathbf{i}_{l}'}_{il} \text{ of } \mathbf{A}_{j}' \mathbf{B}_{j}' \mathbf{I}_{j}' \text{ nd } \mathbf{T}_{j}^{\mathsf{T}}, \ \mathbf{P}_{j}\mathbf{T}\mathbf{P}_{j}' \mathbf{i}; \mathbf{l}; \mathbf{j} \mathbf{2} \mathbf{Z}' \\ \text{fo e ope o } \mathbf{d} = \mathbf{d}\mathbf{x} \end{array}$

opoe e on eco
$$\mathbf{p}$$
 e \mathbf{jm}_0 \mathbf{j}^2 n' nd o n' n
 \mathbf{jm}_0 \mathbf{j}^2 $\mathbf{k}^{-1} \mathbf{a}_n \operatorname{con} ;$
e e \mathbf{a}_n e en n Co \mathbf{p} n' \mathbf{jm}_0 \mathbf{j}^2 ; e e
 \mathbf{jm}_0 \mathbf{j}^2 $\mathbf{k}^{-2} \mathbf{a}_{2k-1} \operatorname{co} \mathbf{k}$ $\mathbf{k}^{-1} \mathbf{a}_{2k} \operatorname{co} \mathbf{k} :$
Co $\mathbf{j}^{-1} \mathbf{n}$ nd o fy \mathbf{j}^{\prime} e o \mathbf{n} n
 $L^{\prime} \mathbf{k}^{-1} \mathbf{a}_{2k} \operatorname{co} \mathbf{k} \cdot \mathbf{k} :$
nd ence nd ee o e \mathbf{k}_1 \mathbf{v}^{\prime} n n' $\mathbf{p}^{\prime} \mathbf{q}_1$ n of \mathbf{a}_{2k-1}
 \mathbf{p} opo on
If the integr

e n n e o n r n n r nd n q ene of e o on of nd fo o f o n e n q ene of e ep e en on of $\mathbf{d}=\mathbf{d}\mathbf{x}$ en e o on \mathbf{r}_l of nd

OPERATORS IN

OPERATORS IN

P opo on

If the integrals in or exist, then the coefficients $\mathbf{r}_{l}^{(n)}$; **I 2 Z** satisfy the following system of linear algebraic equations

$$\mathbf{r}_{l}^{(n)} = {}^{n} \mathbf{4} \mathbf{r}_{2l} - \sum_{k=1}^{k} \mathbf{a}_{2k-1} \mathbf{r}_{2l-2k+1}^{(n)} \mathbf{r}_{2l+2k-1}^{(n)} \mathbf{5}_{2k}$$

and

$$\mathbf{X}_{l^{n}}\mathbf{r}_{l}^{(n)}, \qquad {}^{n}\mathbf{n};$$

where \mathbf{a}_{2k-1} are given in

Let $\mathbf{M} = ;$ where \mathbf{M} is the number of vanishing moments in . If the integrals in or exist; then the equations and have a unique solution with a finite number of nonzero coefficients $\mathbf{r}_{l}^{(n)}$; namely; $\mathbf{r}_{l}^{(n)}$.6 for $\mathbf{L} \mathbf{I} \mathbf{L}$; such that for even \mathbf{n}

$$\mathbf{r}_{l}^{(n)}$$
, $\mathbf{r}_{-l}^{(n)}$;
 \mathbf{x}_{l} $\mathbf{r}_{l}^{(n)}$, $\mathbf{r}_{l}^{(n)}$, \mathbf{n} ,

and

$$\mathbf{x}_{l} \mathbf{r}_{l}^{(n)};$$

and for odd **n**

$$\mathbf{r}_{l}^{(n)}, \quad \mathbf{r}_{-l}^{(n)};$$

$$\mathbf{X}_{l} \mathbf{r}_{l}^{2\tilde{n}-1} \mathbf{r}_{l}^{(n)}, \quad ; \quad \vec{\mathbf{n}}, \quad ; \quad ; \quad \mathbf{n} = :$$

$$a_{1}^{-}, -; a_{3}^{-}, -;$$

nd

$$\mathbf{r}_{-2}$$
, -; \mathbf{r}_{-1} ; \mathbf{r}_{0} ; \mathbf{r}_{1} ; ; \mathbf{r}_{2} , -:

e e of c en =;;;;= one of e nd d c o c e of n e d e ence co c en fo e d de e = e no e on e e e L. = e e o n n' open M. do no e e = o de e ponen ee = e ep e en on

of e d de ee on y f en $\mathbf{n}_{\mathbf{n}} = \mathbf{n} \cdot \mathbf{n}$ of n n $\mathbf{n}_{\mathbf{n}} = \mathbf{n} \cdot \mathbf{n}$ *Remark* Le de en eq on en e z n o fo $\mathbf{d}^n = \mathbf{d} \mathbf{x}^n$ d ec y f $\mathbf{o}_{\mathbf{n}}$, e e e

$$\mathbf{r}_l^{(n)}$$
, $\mathbf{z}_{2\pi} \mathbf{X}_{\mathbf{z}}_{\mathbf{z}}$, \mathbf{j} , $\mathbf{k} \mathbf{j}^2$ n , $\mathbf{k}^{n} e^{-il\xi} \mathbf{d}$:

e efo e

$$\mathbf{r} \stackrel{\checkmark}{\cdot} \stackrel{\mathbf{X}}{\underset{k \in \mathbf{Z}}{\mathbf{j}}} \mathbf{k} \mathbf{j}^2 \quad {}^n \qquad \mathbf{k} \; {}^n;$$

е е

$$\mathbf{r} \stackrel{\frown}{:} \frac{\mathbf{X}}{l} \mathbf{r}_{l}^{(n)} \mathrm{e}^{\mathrm{i}l\xi}$$

— n e e on

$$m_0 = m_0 = m_0$$

n o e f nd de of f nd f nd f ep eyo e e en nd odd nd ce n f e e

$$\mathbf{r} = \sum_{n=1}^{n} \mathbf{j} \mathbf{m}_{0} = \mathbf{j}^{2} \mathbf{r} = \mathbf{j} \mathbf{m}_{0} = \mathbf{j}^{2} \mathbf{r} = \mathbf{j}^{2}$$

By con de n' e ope o M_0 de ned on pe od c f nc on j

$$M_0 f$$
 ; $jm_0 = j^2 f = jm_0 = j^2 f = ;$

e e e

$$M_0 \dot{r}$$
, $-n r$:

 $\mathbf{J}^{\prime}\mathbf{r}$ ne en ec o of e ope o \mathbf{M}_0 co e pond n' o e e en e $^{-n}$ nd e efo e, nd n' e ep e en on of e de e n e e e eq en o nd n' / ono e c po yno \mathbf{A}_1 o on of nd ce e e ope o \mathbf{M}_0 o n od ced n nd \mathbf{J}^{\prime} e e e p o $\mathbf{e}_{\mathbf{A}_1}$ e l'en e con de ed

on y o e nf o \overline{e} o \overline{p} ene y of e y \overline{p} nd doe no ec cond on n d e o o e c e

o pe od zed de e ope o e \overline{o} nd on e cond on n \overline{h} e depend on y on e p c c o ce of e ee \overline{b} Af e pp y n c p econd one, e cond on n \overline{h} e p of e ope o n for y \overline{o} nded e pec o e ze of e \overline{h} e ec e cond on n \overline{h} e con o e e of con e ence of n \overline{h} e of e e \overline{b} fo e pe e en \overline{h} e of e on of e con e e den e o \overline{p} for e pe of e on \overline{h} fo e e e e e cond on n \overline{h} e of e e o \overline{p} fo e e pe en \overline{h} e of e on of e con e e e o \overline{p} e e cond on n \overline{h} e e e e e e pe en e e o \overline{p} n c p e cond on n pp ed o e n d d for \overline{h} fo e e e e o \overline{p} n c pe e n d d for \overline{h} for e non n d d for \overline{h} n e fo o n e pe e n d d for \overline{h} of e pe od zed econd de e D_2 of ze N N' e e N. n' p econd oned y ed ion

D_2^p , PD_2P

e e \mathbf{P}_{il} , $il \stackrel{j'}{\longrightarrow}$ \mathbf{j} \mathbf{n} nd e e \mathbf{j} c o en depend \mathbf{n} on $\mathbf{i}; \mathbf{l}$ o $\mathbf{N} \stackrel{j-1}{\underset{\mathbf{v}}{=}}$ $\mathbf{i}; \mathbf{l} \quad \mathbf{N} \stackrel{j'}{\underset{\mathbf{v}}{=}}$ nd \mathbf{P}_{NN} , n \mathbf{P}_{in} \mathbf{n} \mathbf{n} \mathbf{n}

Table 3

Condition numbers of the matrix of periodized second derivative (with and without preconditioning

n' nd e den y' ' $= \mathbf{m}_0 = ee$ / c e o d p o ded

$$-\boldsymbol{e}_{\xi} \overset{m}{j} \boldsymbol{m}_{0} \quad \boldsymbol{j}^{2} \overset{\mathbf{T}}{\underset{\xi=0}{\overset{}}{\overset{}}{\overset{}{\overset{}}}}}}}}}}}}}}}}}}}}}}}}}}} }} }$$

o de o

$$-\boldsymbol{e}_{\xi} \prod_{\xi=0}^{m} \mathbf{j} \mathbf{m}_{0} \mathbf{j}^{2} \prod_{\xi=0}^{\xi} \mathbf{fo} \mathbf{m} \mathbf{M}$$
 :

B fo \mathbf{a}_1 fo o fo \mathbf{a}_1 e e p c e p e en on n Remark Eq on nd o \mathbf{a}_1 y e en \mathbf{a}_1 en of e co c en \mathbf{a}_{2k-1} fo \mathbf{a}_1 n ' n \mathbf{a}_1 y

$$k \overset{k}{\underset{k=1}{\times}} \overset{2}{\underset{k=1}{}}$$
 fo **m M** :

nce e p en of efnc on n eq on ed o one pon q d e fo fo co p n e ep e en on of con o on ope o on e ne c e fo p o ned ne c y e e p nne fo e pec c o ce of e e e de c ed n e eq pe fo e de per of efnc on n e efe o p pe fo e de

e e e n od ce d e en po c fo co p n ep e n on of con o on ope o n e e e c con of o n e y e of ne e = c eq on ec o y po c cond on e od e pec y pe f e y o f e ope o n cence B onle e on p e d eq on e in ei e

: due

 $\mathbf{r}_{i} = \sum_{k=0}^{n} \mathbf{r}_{k} \mathbf{g}_{k} \mathbf{r}_{2i+k-k} :$ $\mathbf{e} \operatorname{con} \operatorname{cen} \mathbf{r}_{i} \mathbf{1} \mathbf{2} \mathbf{Z} \operatorname{n} \qquad \text{fy e fo o n' y e of ne 'e'' c eq on.}$ $\mathbf{r}_{i} = \mathbf{r}_{2i} - \sum_{k=1}^{n} \mathbf{a}_{2k-1} \mathbf{r}_{2i-2k+1} \mathbf{r}_{2i+2k-1} ;$ $\mathbf{e} \operatorname{e} \operatorname{e} \operatorname{e} \operatorname{con} \operatorname{cen} \mathbf{a}_{2k-1} \operatorname{e'} \operatorname{en n} \operatorname{n'} \mathbf{n'} \operatorname{n'} \operatorname{n'} \operatorname{n'} \mathbf{n'} = \mathbf{a}_{2k-1} \mathbf{r}_{2i-2k+1} \mathbf{r}_{2i+2k-1} ;$ $\mathbf{e} \operatorname{e} \operatorname{e} \operatorname{e} \operatorname{con} \operatorname{cen} \mathbf{a}_{2k-1} \operatorname{e'} \operatorname{en n} \operatorname{n'} \mathbf{n'} \operatorname{n'} \operatorname{n'} \operatorname{n'} \mathbf{n'} = \mathbf{a}_{2k-1} \mathbf{r}_{2i-2k+1} \mathbf{r}_{2i+2k-1} ;$ $\mathbf{e} \operatorname{e} \operatorname{e} \operatorname{e} \operatorname{con} \operatorname{cen} \mathbf{a}_{2k-1} \operatorname{e'} \operatorname{en n} \operatorname{n'} \mathbf{n'} \operatorname{n'} \operatorname{n'} \operatorname{n'} \mathbf{n'} = \mathbf{a}_{2k-1} \mathbf{n'} \mathbf{n'} \mathbf{n'} = \mathbf{a}_{2k-1} \mathbf{n'} \mathbf{n'} \mathbf{n'} = \mathbf{a}_{2k-1} \mathbf{n'} =$

nd

		Table 5			
The core cier	nts $\{ _{l}, l \}_{l}, = -7$	· 14 of the fractional	derivative	= 0.5 for Daubechies' wa	avelet
with six vanis	shing" moments.				

		Coe cients		Coe cients
		▶. ^l		v ^l
M = 6	-7	-2.82831017E-06	4	-2.77955293E-02
	-6	-1.68623867E-06	5	-2.61324170E-02
	-5	4.45847796E-04	6	-1.91718816E-02
	-4	-4.34633415E-03	7	-1.52272841E-02
	-3	2.28821728E-02	8	-1.24667403E-02
	-2	-8.49883759E-02	9	-1.04479500E-02
	-1	0.27799963	10	-8.92061945E-03
	0	0.84681966	11	-7.73225246E-03
	1	-0.69847577	12	-6.78614593E-03
	2	2.36400139E-02	13	-6.01838599E-03
	3	-8.97463780E-02	14	-5.38521459E-03

6. Shift operator on V_0 and fast wavelet decomposition of all circulant shifts of a vector. Le con de f \neg one on e \neg p ce \mathbf{V}_0 ep e en ed у е 🛋

$$\mathbf{t}_{i-j}^{(0)} \quad i=j,1;$$

e e e onec e y \mathbf{t}_{l} n' e \mathbf{a}_{n} of e e
 $\mathbf{t}_{l}^{(0)} \quad l,1; \quad \mathbf{t}_{l}^{(1)} \quad \frac{1}{2}\mathbf{a}_{|2l-1|}; :$

e non nd d'nd' é efo e' e nd d fo a_1 of e f ope o e p e nd e y o co a_1 e P c en

The coe cients $\{ {}^{(j)}_l \}_{l=-L+2}^{l=L-2}$ for Daubechies' wavelet with three vanishing moments, where L = 6 and $\sqrt{2} = 1 \cdots 8$.

		Coe cients			Coe cients
		(j) l			(j) l
	-4	0.		-4	-8.3516169979703E-06
	-3	0.		-3	-4.0407157939626E-04
	-2	1.171875E-02		-2	4.1333660119562E-03
	-1	-9.765625E-02		-1	-2.1698923046642E-02
	0	0.5859375		0	0.99752855458064
	1	0.5859375		1	2.4860978555807E-02
	2	-9.765625E-02		2	-4.9328931709169E-03
	3	1.171875E-02		3	5.0836550508393E-04
	4	0.		4	1.2974760466022E-05
√ = 2	-4	0.	√ = 6	-4	-4.7352138210499E-06
	-3	-1.1444091796875E-03		-3	-2.1482413927743E-04
	-2	1.6403198242188E-02		-2	2.1652627381741E-03
	-1	-1.0258483886719E-01		-1	-1.1239479930566E-02
	0	0.87089538574219		0	0.99937113652686
	1	0.26206970214844		1	1.2046257104714E-02
	2	-5.1498413085938E-02		2	-2.3712690179423E-03
	3	5.7220458984375E-03		3	2.4169452359502E-04
	4	1.3732910156250E-04		4	5.9574082627023E-06
√ = 3	-4	-1.3411045074463E-05	√ = 7	-4	-2.5174703821573E-06
	-3	-1.0904073715210E-03		-3	-1.1073373558501E-04
	-2	1.2418627738953E-02		-2	1.1081638044863E-03
	-1	-6.9901347160339E-02		-1	-5.7198034904338E-03
	0	0.96389651298523		0	0.99984123346637
	1	0.11541545391083		1	5.9237906308573E-03
	2	-2.3304820060730E-02		2	-1.1605296576369E-03
	3	2.5123357772827E-03		3	1.1756409462604E-04
	4	6.7055225372314E-05		4	2.8323576983791E-06

Ý	= 4	-4	-1.2778211385012E-05	v = 8	-4	-1.2976609638869E-06
		-3	-7.1267131716013E-04		-3	-5.6215105787797E-05
		-2	7.5265066698194E-03		-2	5.6059346249153E-04
		-1	-4.0419702418149E-02		-1	-2.8852840759448E-03
		0	0.99042607471347		0	0.99996009015421
		1	5.2607019431889E-02		1	2.9366035254748E-03
		2	-1.0551069863141E-02		2	-5.7380655655486E-04
		3	1.1071795597672E-03		3	5.7938552839535E-05
		4	2.9441434890032E-05		4	1.3777042338989E-06
0	0		o 🚕 e pc e n	e co,	p e	ed^{*} fo \blacksquare_{1} e co
e	f	op	e o cn e oed m	ı d no	e no	d ed needed

c en

ope

fo o e \mathbf{s}_{k}^{j-1} , \mathbf{k}_{\star} ; ; $^{n-j}$ e one of e eco of e e on epe o c e **j** nd comp e

$$\mathbf{s}_{k}^{j}$$
, $\mathbf{x}_{n=0}^{n}$, $\mathbf{h}_{n}\mathbf{s}_{n+2k-1}^{j-1}$

$$\mathbf{s}_k^j$$
, $\mathbf{x}_{n=0}^{n}$, $\mathbf{h}_n \mathbf{s}_{n+2k}^{j-1}$;

nd

$$\mathbf{d}_k^j \stackrel{\sim}{\cdot} \begin{array}{c} {}^n \overset{n \overset{\sim}{\star}^{-1}}_{n=0} \\ {}^{\mathbf{g}_n \mathbf{s}_{n+2k-1}^{j-1}}; \end{array}$$

$$\mathsf{d}_k^j \stackrel{\sim}{,} \overset{n \not {} \bullet^{-1}}{\underset{n=0}{\overset{n=0}{\overset{}}}} \mathsf{g}_n \mathsf{s}_{n+2k}^{j-1}:$$

o co. $\mathbf{a}_{\mathbf{p}}$ e e $\mathbf{a}_{\mathbf{n}}$ n nd , e f \mathbf{y} one e eq ence \mathbf{s}_{k}^{j-1} n

$$\mathbf{v}_1^{\cdot}$$
, \mathbf{d}_k^1 ; \mathbf{d}_k^1

nd

$$\mathbf{u}_{1}$$
, \mathbf{s}_{k}^{1} ; \mathbf{s}_{k}^{1} ;

e e \mathbf{d}_k^1 , \mathbf{d}_k^1 , \mathbf{s}_{k+1}^1 , $\mathbf{nd} \mathbf{s}_k^1$ e co \mathbf{q}_k ed f o \mathbf{q}_k^0 cco d n o On e econd c e \mathbf{j} , e e

$$\mathbf{v}_2^{'}$$
, \mathbf{d}_k^2 ; $\mathbf{d}_{ ext{e ge 8}}$

ne c e fo $\overline{\sigma}$ \mathbf{s}_{k}^{1} nd \mathbf{s}_{k}^{1} ' e ' n $\overline{\sigma}$ ' n po e con c en fo odd nd e en f c e co e c n \mathbf{v}_{2} nd \mathbf{u}_{2} ' e c e e e co \mathbf{v}_{1} ; \mathbf{v}_{2} ; ; \mathbf{v}_{n} con n e con c en ' e e con c en e no o ' n zed eq en y n o de o c c e $\mathbf{e}_{\mathbf{u}_{1}}$ e ' ene e o ' e \mathbf{i}_{loc} \mathbf{i}_{s} ; \mathbf{j} nd \mathbf{i}_{b} \mathbf{i}_{s} ; \mathbf{j} n **O** N o' N ope on fo o o e c f \mathbf{i}_{s} ' \mathbf{i}_{s} N of e e c o \mathbf{s}_{b}^{0} ; \mathbf{k}_{s} ; ; ; \mathbf{N}_{s} e e e ' n y e p n on of \mathbf{i}_{s} '

$$\vec{\mathbf{i}}_{s}, \vec{\mathbf{i}}_{l=0}^{l-1}$$

 $e \in \hat{i}$; to ed c e j' j n' e co p e

$$\mathbf{i}_{loc} \mathbf{i}_{s}; \mathbf{j}, \mathbf{j}, \mathbf{i}_{s}^{l+1}, \mathbf{i}_{s};$$

nd

$$\mathbf{i}_{b} \mathbf{i}_{s}; \mathbf{j} : \sum_{l=n-1}^{\mathbf{X}^{j}} l^{l};$$

e e $\mathbf{i}_{b} \mathbf{i}_{s}; \mathbf{j}^{*}, \mathbf{f}_{s}, \mathbf{n}$ en $\mathbf{v}_{1} \mathbf{e}^{*} \mathbf{i}_{b} \mathbf{i}_{s}; \mathbf{j}$ pon o e $\mathbf{e}^{*} \mathbf{n}_{n} \mathbf{n}'$ of e $\mathbf{e}^{*} \mathbf{e}^{*}$ o of d e ence $\mathbf{n} \mathbf{v}_{j}$ N $\mathbf{e}^{*} \mathbf{y}'$ e $\mathbf{e}^{*} \mathbf{e}^{*} \mathbf{e}^{*} \mathbf{o}$ of \mathbf{v}_{j} nd ce $\mathbf{e}^{*} \mathbf{e} \mathbf{e} \mathbf{n} \mathbf{i}_{b} \mathbf{i}_{s}; \mathbf{j}$ nd $\mathbf{i}_{b} \mathbf{i}_{s}; \mathbf{j}^{n-j}$ n $\mathbf{e}^{*} \mathbf{e}^{*} \mathbf{e}$

e no — e y de c — e one of e pp c on of e /o \mathbf{n}_{1} fo e f e e deco po on of c c n f of e c o n n \mathbf{n}_{2} c n y e /o \mathbf{n}_{1} of e de / ned o e e e C de on Zy/ \mathbf{n}_{1} nd o p e dod e en ope o T e ne K x; y /

$$g x$$
, $Z_{+\infty}$
 $-\infty$ K x; y f y dy

 ∇ con c n' fo ny ed cc cy p e non nd do nd d fo \neg_n nd e e ∇ ed c n' e co of pp y n' o f nc on

Le e e

$$\mathbf{z}_{+\infty}$$

 $\mathbf{x}_{-\infty}$ K x; x z f x z dz:

f e ope o **T** con o on en **K X**; **X Z K Z** f nc on of **Z** on y e non nd d fo n of con o on eq e \mathbf{N} **O** of **N** of o le ee e p e o ec on e e nd d fo n of con n **O N** o **O N** of **N** ln c n en e e en fo con o on A e n e y e nd d fo n of **K X**; **X Z K Z** n e **X** nd **Z** fo e con o on ope o con n no \mathbf{N} e n **O** of **N** in c n en e fo ny ed cc cy nce e e ne depend on one e on y