










134 BEYLKIN AND COULT

original partial differential equation (2.7) has the same average or coarse-scale behavior
as the solution of the partial differential equation with coefficients given by ah(x).

The approach of classical homogenization is to consider the family of equations

0�r(a(x /e)�u e(x)) � f (x) , (2.8)

where the function a(x) is periodic. Clearly, as e r 0, the coefficients a(x) become
more and more oscillatory. This implies that the coefficients change on a scale that
is asymptotically fine relative to the fixed coarse scale of the solution. The problem
is to find an equation of the form (2.7) which has the weak limit u 0 of u e as its
solution. The coefficients of this equation are taken to be the effective coefficients of
the family of equations given by (2.7) . Such formulations of homogenization problems
are discussed in detail in, e.g., [2] and references therein.

Multiresolution homogenization as defined in [4] is, like classical homogenization,
a limit process. It finds the effective coefficients of ODEs by (i) computing recurrence
relations of the coefficients over one scale of reduction, ( ii ) finding the limit of the
coefficients over infinitely many scales, and (iii ) identifying an equation with smooth
or constant coefficients such that reduction over infinitely many scales results in the
same equation as the limit from (ii) . This procedure does not assume asymptotic
separation of fine and coarse scales.

In this paper we use the term homogenization to refer to a limit procedure. In
classical homogenization, the fine scale is associated with a small parameter, and the
limit is considered as this small parameter goes to zero. Multiresolution homogeniza-
tion considers a limit over infinitely many scales. We use the term reduction to refer
to an explicit transition between neighboring scales and in this paper study it over
finitely many scales. We permit the coefficients to vary on intermediate scales.

The reduction procedure when applied to partial differential equations presents
several interesting problems. First let us briefly describe some important points about
the reduction procedure for ODEs. It is observed in [4] that, for systems of linear
ordinary differential equations, using the Haar basis (and also multiwavelets with
disjoint supports; see [1]) provides a technical advantage. Since the functions of the
Haar basis on a fixed scale do not have overlapping supports, the recurrence relations
for the coefficients and forcing terms in the equation may be written as local relations
and solved explicitly. Thus for systems of ODEs, an explicit reduction and homogeni-
zation procedure is possible. Gilbert [11] has demonstrated the reduction and homoge-
nization of [4] applied to the one-dimensional version of (2.7) and has established a
connection to classical homogenization results (see, e.g., [2, 15]) . Dorobantu [10]
has also connected multiresolution homogenization with classical homogenization in
the one-dimensional case.

The situation for partial differential equations is more complicated. Indeed, when
the reduction procedure is applied to partial differential equations of the form, e.g.,
(2.7) , the recurrence relations for the reduced operators do not appear to be locally
solvable. Therefore, unlike the homogenization and reduction procedure outlined in
[4] for ODEs, there does not seem to be an explicit local recurrence relation for the
coefficients of the partial differential equation. Since such a recurrence does not appear
feasible even with the Haar basis, one might as well consider the general scheme
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