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subjects use approximately normative decision strategies,
and when and how they fail to do so, can be computa-
tionally challenging. For instance, one may wish to study
how a subject’s estimate of the environmental timescale
impacts their response accuracy, or how heuristic evidence-
discounting strategies compare to optimal ones (Glaze et al.
2018; Radillo et al. 2019). To address these questions, pre-
vious work has primarily relied on Monte Carlo simulations
(Veliz-Cuba et al. 2016; Piet et al. 2018), which can be
computationally expensive.

Here, we show how to reframe dynamic decision
models by deriving corresponding differential Chapman-
Kolmogorov (CK) equations (See Eq. (6)). This approach
allows us to quickly compute observer beliefs and
performance, and compare models. Realizations of our
models are described by stochastic differential equations
with a drift term that switches according to a two-state
Markov process, and leak terms that discount evidence. To
describe these models using CK equations, we treat the
switching process as a source of dichotomous noise, and
condition on its state to track conditional belief densities.
These methods allow us to quickly answer questions
about how characteristics of optimal models and their
approximations vary across ranges of task parameters.

Nonlinear, normative models can thus be compared
to approximate linear and cubic discounting models,
models with internal noise, and explicitly solvable bounded
accumulation models with no flux boundaries. These



an observer whose belief is represented by Eq. (2). These
quantities can be changed by varying psychophysical task
parameters (Glaze et al. 2015, 2018





How does the response accuracy of an observer whose
belief is described by Eq. (2) change when h̃ is mistuned?
Veliz-Cuba et al. (2016) addressed this question using
Monte Carlo sampling, but computational costs prevented a
complete answer. Since Eq. (2) is rescaled, we take h = 1
for the remainder of our investigation; all other cases can be
recovered by rescaling time. Before asking how changing
h̃ alters accuracy, we first briefly mention how accuracy
varies with evidence strength, fixing h̃ = h = 1. The
density ps(y, t) computed using Eq. (6) rapidly converges
to the stationary solution, with most of its mass above zero
(Fig. 2a). As m, increases, more mass of the stationary
distribution moves to positive values (Fig. 2b), but the total
mass, equal to limT →∞ Acc(T ), always saturates at a value
less than 1 due to discounting and state switching.

When the observer misestimates the hazard rate, h̃ �= h,
we expect the long term accuracy to suffer. Effects on
accuracy are subtle, but do follow a general pattern: over-
estimating the hazard rate (h̃ > h) causes the observer to
discount prior evidence too strongly, resulting in more errors
driven by observation noise (Fig. 2c). On the other hand,
observers that underestimate the hazard rate (0 < h̃ < h)
discount evidence too slowly and are less adaptive to change
points. Change point triggered response accuracy plots
show both of these trends (Fig. 2d). Accuracy obtains a
lower ceiling value during longer epochs without environ-
mental changes when the discounting rate h̃ is too high. On
the other hand, accuracy recovers more slowly following
changes when the discounting rate h̃ is too low. This bias-







the value of h̃ that maximizes response accuracy decreases
as D



To compute steady state accuracy of the bounded
accumulator model, we can integrate Eq. (17) to obtain a
formula that depends on m and β:
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probability density p̄C
s (y) and that of the normative model,

p̄N
s (y), though the model is more complex (Friedman et al.
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insights into how and why organisms fail to perform
optimally (Geisler 2003). Investigating optimal models
and their approximations requires simulations across large
parameter spaces; these necessarily require rapid simulation
techniques to obtain refined results. Efficient computational
methods are therefore essential for the analysis of evidence
accumulation models, and their application to experiment
design.

Using differential CK equations to describe ensembles
of decision model realizations speeds up computation
and describes the time-dependent probability density
of an observer’s belief. Thus, traditional metrics of
performance (e.g., accuracy) and other less common model
comparison metrics (KL divergence) can be computed
rapidly. This opens new avenues for comparing normative
and heuristic decision making models, and for determining
task parameter ranges to distinguish models. There is
also hope that in high throughput experiments, sufficient
data could be collected to specify subject confidence
distributions, which could be fit, or compared to model
predictions (Piet et al. 2019).

Doubly stochastic and jump-diffusion models appear
in a number of other contexts in neuroscience and
beyond (Hanson 2007; Horsthemke and Lefever 2006).
For instance, dichotomous and white noise have been
included in linear integrate and fire (LIF) models to model
voltage or channel fluctuations (Droste and Lindner 2014;
2017; Salinas and Sejnowski 2002). The interspike interval
statistics of these models can be analyzed directly by



work considered more general forms of non-stationarity,
their mathematical treatments focused on decision time
statistics for single trials, rather than trial ensembles, as we
studied here using our differential CK approach. Our mathe-
matical approach allowed us to compare the performance of
a broad array of evidence accumulation models across task
parameter space.

Our study has focused on models of an observer has
a fixed estimate of the discounting rate, and does no
further learning of the change rate. Previous studies by
Radillo et al. (2017) and Glaze et al. (2018) derived
ideal observer models capable of inferring the change rate
of a dynamic environment, and showed approximations
can perform nearly as well in some circumstances. It
is possible to formulate the ensemble dynamics of such
models using differential CK equations, but the state
space can be high-dimensional as the observer must track
probabilities over possible change rate values h. In such
cases, numerical methods for solving high-dimensional
partial differential equations are needed to make solving
the ensemble equation in this way worthwhile. In ongoing
work, we have developed ways of quantifying the rate at
which learning occurs in these models (Eissa et al. 2019),
and also identified when it is useful to apply this differential
CK equation approach to analyzing model performance.
These results will be reported elsewhere.

In recent years, decision-making models and experiments
have been developed to incorporate more naturalistic
scenarios in which the environment changes in fluid yet
predictable ways. The associated normative models can be
complex, and efficient simulation techniques are important

https://github.com/nwbarendregt/DynamicDecisionCKEquations
https://github.com/nwbarendregt/DynamicDecisionCKEquations


so we can compute the limits of Eq. (29) as

g(t) = lim
�t→0

g�t (t) ∈ ±2µ2
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