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Abstract We describe a new method for numerical integration, dubbed bandlimited collo-
cation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits
to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses gen-
eralized Gaussian quadratures for bandlimited functions. This new method allows us to use
significantly fewer force function evaluations than explicit Runge–Kutta schemes. In partic-
ular, we use a low-fidelity force model for most of the iterations, thus minimizing the number
of high-fidelity force model evaluations. We also investigate the dense output capability of
the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical
integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7),
Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson
multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor
environment.
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1 Introduction

We present a new numerical integration technique, developed by Beylkin and Sand-
berg at the University of Colorado (Beylkin and Sandberg 2014; Beylkin and Monzón
2002), and compare its performance in propagating orbits to existing techniques com-
monly used in Astrodynamics. The new scheme, dubbed the bandlimited collocation implicit
Runge–Kutta (BLC-IRK) method, is an Implicit Runge–Kutta (IRK) collocation scheme
which uses generalized Gaussian quadratures for bandlimited exponentials rather than the
classical quadratures for orthogonal polynomials. We note that IRK methods have been
constructed for a variety of polynomial based quadratures, such as Gauss–Legendre, Gauss–
Lobatto, and Chebyshev (e.g., see discussions in Jones and Anderson 2012; Iserles 2009;
Hairer et al. 2002). Among polynomial based IRK collocation schemes, only the scheme
based on Gauss–Legendre quadratures achieves the highest order of approximation, is A-
stable, and symplectic. The new BLC-IRK scheme is also A-stable and symplectic, achieves
any user-selected accuracy and, in addition, allows one to use a large number of nodes within
each time interval without the penalty of excessive node concentration near the endpoints of
the interval. The properties of BLC-IRK scheme significantly affect the approach to using it
in Astrodynamics.
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The intent of this paper is to provide a mathematical overview of the new BLC-IRK inte-
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The quadrature nodes {τ j }M
j=1, weights {w j }M

j=1, and entries of the integration matrix Si j are
typically displayed in a Butcher tableau,

τ S
wT (6)

which expands to

τ1 S1,1 · · · S1,M

τ2 S2,1 · · · S2,M
...

...
...

τM SM,1 · · · SM,M

w1 · · · wM

(7)

We use τ , w, and S, for representing nodes, weights, and the integration matrix and note that
the variables c, b, and A have also been used for this purpose in the literature.

In ERK methods, the integration matrix is lower triangular, Si j = 0 for j ≥ i , and,
consequently, such methods are explicit. In IRK methods, the set of nonlinear equations in
Eq. 4 has to be solved on each time interval. Several techniques are available, such as fixed-
point or Newton iterations (Iserles 2009; Atkinson et al. 2009). The advantages, disadvan-
tages, and implementation of each method are discussed in Jones and Anderson (2012),
Hairer et al. (1993, 2002), and Hairer and Wanner (1996).

Historically, IRK methods have been used sparingly in Astrodynamics due to the additional
computations required to iteratively solve for the values of the solution at the nodes y(hτ j )

and the fact that ERK methods are simple to code, well-documented, and include several
adaptive step methods. Advances in computational power and changes in computer archi-
tecture, however, have evened out the computational cost of explicit and implicit schemes.
IRK methods lend themselves to multi-core computers and graphics processing units (GPUs)
since, within a single iteration, the force model evaluation f may be performed simultane-
ously at all nodes. We refer to Jones and Anderson (2012) for a summary of methods and
references on this topic specific to Astrodynamics.
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for the user-selected accuracy ε > 0, bandlimit 2c > 0, and weights w j > 0. The nodes
τ j and weights w j depend on the bandlimit and accuracy. In the BLC-IRK method the
weight W (t) = 1 and the nodes correspond to the zeros of discrete prolate spheroidal wave
functions (DPSWFs) (Slepian 1978). As it is traditional, generalized Gaussian quadratures
are constructed on the interval [−1, 1] although we use them on [0, 1] (with the appropriate
linear transformation).

Beylkin and Monzón (2002) show that by finding quadrature nodes for exponentials with
bandlimit 2c and accuracy ε2, we can generate an interpolating basis for bandlimited functions
with bandlimit c and accuracy ε. These interpolating basis functions are defined as

R j (x) =
M∑

l=1

r jl e
icτl x (15)

for j = 1, . . . , M with

r jl =
M∑

k=1

w j �k(τ j )
1

ηk
�k(τl)wl , (16)

where the matrix �k(τl) is obtained by solving an algebraic eigenvalue problem,

M∑

l=1

wl e
icτl τm �k(τl) = ηk�k(τm), k, m = 1, . . . , M. (17)

Following Beylkin and Monzón (2002), accurate approximations to the first M PSWFs are
then defined as

�k(τ ) = 1

ηk

M∑

l=1

wl�k(τl)e
icτl τ , k = 1, . . . , M. (18)

Given interpolating basis functions R j (s), the elements of the integration matrix for BLC-
IRK are then computed as

Si j =
τi∫

0

R j (s)ds. (19)

We note that in Beylkin and Sandberg (2014), the construction of interpolating functions
and integration matrix is modified in order to assure that the resulting BLC-IRK method is
symplectic.

The quadratures for exponentials offer certain advantages over polynomial-based quadra-
tures. It is well known that the nodes of polynomial-based quadratures cluster significantly
towards the ends of each interval as the number of nodes increases (a simple heuristic expla-
nation is that polynomials can grow rapidly toward the end points of an interval causing high
node concentration). Nodes of quadratures for exponentials, however, do not accumulate as
rapidly at the endpoints.

Typically only a small number of nodes of polynomial-based quadratures are used in
IRK methods to avoid oversampling at the interval boundaries (e.g., 2–4 nodes). Following
Beylkin and Sandberg (2005), we define a ratio

r(M, ε) = τ2 − τ1

τ�M/2	 − τ�M/2	−1
, (20)
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– Number of nodes per interval (bandlimit) (M): For a given accuracy ε, the number of
nodes per interval determines bandlimit and vice versa. More nodes per interval equates
to a higher bandlimit.

– Number of Intervals (NI ): A time interval NI is similar to a step size h in traditional
integration schemes where NI = (t f − t0)/h and t f denotes the final time of the entire
orbit propagation. Each interval contains the same number and placement of nodes (i.e.,
this is a fixed-step and fixed-order implementation). Choice of number of nodes, or
bandlimit, will affect the number of intervals required to achieve a certain propagation
accuracy, however, number of intervals NI is a user-defined input parameter. This is
similar to choosing a step size in fixed-step integration schemes. As demonstrated later,
there is a distinct, optimal NI for a given number of nodes per interval.

– Number of Low-Fidelity Force Model Iterations (N1): The number of evaluations of
the low-fidelity force model at each node before the high-fidelity force model is evaluated.
Iteration is used to solve for each vector function, ξ , placing the solution at each node in
a location that is close to its true location.

– Number of Iterations After Accessing High-Fidelity Model (N2): The number of
evaluations of the low-fidelity force model at each node after the high-fidelity force
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Algorithm 1 Iteration Using Low- and High-Fidelity Force Models
Inputs are number of iterations N1 and N2, number of nodes M , and low- and high-fidelity force models
f low and f high.

Note: This algorithm is to be used for each interval

for i1 = 1 → N1 do
for m = 1 → M do

Update ξm by evaluating f m
low

end for
end for

for m = 1 → M do
Evaluate f m

high and store � f m = f m
high − f m

low
end for

for i2 = 1 → N2 do
for m = 1 → M do

Evaluate f m
low

Update ξm with f m
low + � f m

end for
end for

for m = 1 → M do
Update ξm by evaluating f m

high
end for

Hairer et al. 2002 and Jones 2012) as well as adaptive step explicit Runge–Kutta schemes
(see e.g., Prince and Dormand 1981). This paper specifies each iteration count in an effort to
illustrate the low-/high-fidelity force model use. As demonstrated in the results, this method
proves sufficient, but a more user-friendly interface may be desirable.

The force model evaluation may be accelerated using multi-core processors. While this is
a property of all IRK methods, BLC-IRK will benefit the most from parallelization due to the
large number of nodes per interval. Future work will include optimizing BLC-IRK for use
with multiple cores and comparing evaluation times with other integration techniques (see
e.g., Bai (2010) and Bai and Junkins (2011a) investigating the use of GPUs to parallelize a
Chebyshev-based collocation method (MCPI) with tens to hundreds of nodes per interval).

3.1 Case study description

This investigation uses three types of orbits to evaluate BLC-IRK and compare its perfor-
mance to commonly used integrators in the Astrodynamics community. A low-Earth orbit
(LEO), geostationary orbit (GEO), and a Molniya orbit (MOL) were chosen to investigate
different orbital regimes and eccentricities. Table 1 lists the Keplerian orbital elements at
epoch (0h January 1st, 2011) for each of the three orbits and includes the perigee altitude,
h p .

A range of values for each BLC-IRK input parameter are used to examine the full range
of accuracies. For each orbit type, BLC-IRK is implemented using 1–130 intervals over the
duration of the propagation as well as 1–3 iterations for both N1 and N2. For all analyses
that follow, results are displayed for propagations lasting 3 orbital revolutions of the orbit in
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Table 1 Initial osculating Keplerian orbital elements and perigee altitude of each orbit investigated in this
study

Name a (m) e i (◦) � (◦) ω (◦) ν (◦) h p (km)

LEO 6,730,038.57 0.000802 35.00 5.00 335.05 19.95 346.5

MOL 26,553,376.35 0.740969 63.40 330.21 270.00 0.00 500.0

GEO 42,164,118.25 0.000999 0.01 27.30 10.00 2.30 35,743.8

Truth Data Points, XT

BLC-IRK Data Points, XC

XT , interp

Fig. 3
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Fig. 4 RMS values of position
errors for propagations of the
LEO, GEO, and MOL orbits
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evaluations. This is justified by the fact that the high-fidelity force model requires sev-
eral orders of magnitude more mathematical operations than the low-fidelity force model.
This is mainly due to the high degree and order 70 × 70 spherical harmonic gravity model
computation.

The results reveal that the choice of node count does not affect how many high-fidelity
force model evaluations are necessary to achieve a given accuracy. At first, the fact that the
number of nodes does not affect the outcome of Fig. 5a seems odd. However, this feature
is actually a byproduct of the node accumulation ratio of the generalized Gaussian quadra-
tures illustrated in Fig. 1a. Since the ratio asymptotically approaches a constant greater than
zero, additional force model evaluations are not wasted towards the interval endpoints as
with polynomial-based quadratures. As nodes are added, the number of intervals required to
achieve a given level of accuracy is reduced, thereby lowering the number of force model
evaluations. This point is illustrated in Fig. 5b. Jones (2012) demonstrates this weakness of
polynomial-based quadrature schemes by showing the diminishing return of adding nodes
in a GL-IRK scheme. As nodes are added, there comes a point when the number of force
model evaluations necessary to achieve the certain precision starts increasing. Therefore,
BLC-IRK will benefit from parallelization even more than a polynomial-based scheme such
as GL-IRK since additional nodes (and thus processors) may be added without the same
diminishing return.

3.4 Symplectic property

As with GL-IRK methods (Sanz-Serna 1988), the BLC-IRK method is symplectic (Beylkin
and Sandberg 2014). By imposing constraints on the integration matrix and weights of the
generalized Gaussian quadratures, the BLC-IRK method becomes symplectic, making it
an excellent tool for long-term orbit propagation. Specifically, in order to be symplectic a
Runge–Kutta method must satisfy the conditions (Sanz-Serna 1988)

wi Si j + w j S ji − wi w j = 0, i, j = 1, . . . , M. (22)

We demonstrate the symplectic property of the BLC-IRK method by using an energy-like
integral analogous to the Jacobi integral of the Restricted Three-Body Problem. The Jacobi
constant, K , is computed by

V 2

2
− μ

R
− U ′(R) = K = constant (23)

where μ is the gravitational parameter of the central body, R and V are the orbital radius
and inertial velocity of the satellite, respectively, and U ′(R) is the gravitational potential
of the Earth (without the point-mass contribution) (

ŠR1



Runge–Kutta integration for Astrodynamics 157

Fig. 6 Change in Jacobi constant
during a 10-year GEO
propagation using point-mass and
zonals J
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– Gauss–Jackson 8th-order (GJ 8): a multi-step predictor-corrector method of 8th-order
which uses a fixed step size (Jackson 1924; Fox 1984; Berry and Healy 2004). This
scheme has been used by US Space Surveillance Centers since the 1960’s due to its
highly efficient propagation of near-circular orbits (SPADOC Computation Center 1982;
Berry and Healy 2004).

In space surveillance and many other applications, we often have an option to sacri-
fice accuracy for reduced computation time. Thus, we desire an integration scheme which
achieves a necessary level of accuracy while minimizing the number of force model evalu-
ations and computation time required. We compare each integrator based on the number of
force model evaluations (function calls) that are used to achieve various levels of position
error. It is important to remember that this study evaluates integration error only and we are
not considering the separate topic of force model errors. Note that the reported number of
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Fig. 7 Comparison of RMS
position errors over a 3-orbit
GEO (a) and LEO (b)
propagation
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Fig. 8 Comparison of low- and
high-fidelity force models used in
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Table 3 Performance summary of integration methods over three orbit periods

Orbit Method Function calls
(<1 m error)

Function calls
(<1 cm error)

LEO RKF 7(8) 1500 2320

DOPRI 8(7) 1230 2230

DOPRI 5(4) 1350 3800

GJ 8 370 600

BLC-IRK 640 640

BLC-IRK (2 processors) 320 320

BLC-IRK (ideal parallel) 10 10

GEO RKF 7(8) 1370 2630

DOPRI 8(7) 815 1300

DOPRI 5(4) 2050 5520

GJ 8 210 270

BLC-IRK 256 512

BLC-IRK (2 processors) 128 256

BLC-IRK (ideal parallel) 4 8

MOL RKF 7(8) 2690 3860

DOPRI 8(7) 2600 3470

DOPRI 5(4) 3870 9350

GJ 8 4930 8610

BLC-IRK 4608 6140 (3 cm)

BLC-IRK (2 processors) 2304 3070 (3 cm)

BLC-IRK (ideal parallel) 72 96 (3 cm)

The approximate number of function calls required to reach a given level of accuracy for each orbit type and
each numerical integration technique discussed in this study. Additional entries are given for a 2-processor
parallelized and an ideally parallelized BLC-IRK implementation (i.e., 64 processors used and neglecting
communication overhead). Note that GJ 8 was restricted to only use 1 iteration (i.e., force model evaluation)
per step

operating both schemes in fixed-step mode and uses fixed-point iteration instead of low- and
high-fidelity force models. While BLC-IRK and GL-IRK perform quite similarly for GEO
orbits, BLC-IRK outperforms GL-IRK in both LEO and highly-eccentric orbits, which is
due to the improved node spacing of the BLC-IRK nodes. Similarly, the benefit of BLC-IRK
over GL-IRK is enhanced as more nodes are used. Note that all cases in Herman et al. (2013)
were restricted to the use of a large number of nodes (i.e., 32 and 200). Figure 1 of this paper
implies that GL-IRK and BLC-IRK may not exhibit much of a difference for cases with
fewer nodes.

Future work will include developing an efficient step size control algorithm for BLC-IRK.
Unlike the embedded ERK methods that exist, no such IRK method has been developed with
a second, embedded method, to be used for step size control. However, a few algorithms
to control step size for IRK methods do exist. Jones (2012) discusses the implementation
of a variable-step algorithm from Houwen and Sommeijer (1990) with a GL-IRK scheme.
Jones (2012) demonstrates that the variable-step algorithm, dubbed VGL-s, improves upon
the fixed-step GJ 8 for highly-eccentric orbits, but recommends that further work be done to
improve the efficiency of the algorithm. Aristoff et al. (2014) develops a variable-step GL-

123
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IRK implementation, dubbed VGL-IRK, for orbit and uncertainty propagation and compares
its performance against DOPRI 8(7), VGL-s, and MCPI. Aristoff et al. (2014) shows that
their VGL-IRK scheme outperforms the other integration methods in LEO, GEO, and highly-
eccentric orbits, making their variable-step version of GL-IRK very attractive. As BLC-IRK
contains more efficient node spacing than GL-IRK, a variable-step implementation of BLC-
IRK should outperform VGL-IRK, in theory. As mentioned, this is an important part of
our future work. Other recently developed integration schemes (mainly symplectic) and
comparison studies of note include Hubaux et al. (2012), Blanes and Iserles (2012), Blanes
et al. (2013), Farrés et al. (2013), Rose and Dullin (2013), and Nguyen-Ba et al. (2013).

4.2 Dense output

All collocation-based IRK schemes have built-in interpolation to evaluate solutions at arbi-
trary points. This section outlines and examines the dense output capability of the BLC-IRK
method. We first describe how to interpolate a solution computed at the quadrature nodes
{τm}M

m=1 to an arbitrary time τ . For clarity, we present the necessary equations for the case
where the quadrature nodes τm lie on the interval [−1, 1], noting that if the time τ̃ is given in the
interval [α, β], we can easily rescale it to the interval [−1, 1] as τ = (2τ̃−α−β)/(β−α). Data
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Fig. 10 BLC-IRK collocation
interpolation error for a GEO
propagation. BLC-IRK
propagation performed using 4
intervals/orbit and 64
nodes/interval. Interpolation is
performed every 5 seconds. Note
that the plotted error is due to
both interpolation and integration
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Fig. 11 Interpolation errors of
BLC-IRK (a) and DOPRI 8(7)
(b) trajectories using a 5th-order
Lagrange scheme. Interpolations
are performed every 5 seconds. A
relative tolerance of 10−13 was
used for step size control of the
DOPRI 8(7) propagation
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BLC-IRK is based, yield node spacing that is more efficient than traditional polynomial-
based quadrature methods such as Gauss–Legendre, Gauss–Lobatto, and Chebyshev. This
promotes the use of large time intervals and a large number of nodes per interval, reducing
the computational load near the clustered endpoints as with polynomial-based quadratures.
Additionally, the A-stable property of BLC-IRK makes its use appealing to solving stiff
ODEs, including atmospheric entry.

We demonstrated superior performance of BLC-IRK over commonly used ERK methods
for near circular orbits while closely matching GJ 8, even when operating in serial mode
(no parallelization). Note that the GJ 8 results presented here were done with an imple-
mentation that uses one force model evaluation per step only. Ordinary versions of GJ 8
would likely contain iteration, resulting in several force model evaluations at each step. The
presented BLC-IRK implementation of using both low- and high-fidelity force models is
a major contributor to the efficiency. The specific execution can be tuned for each unique
scenario, leaving room for improvement even on the implementation presented here. The
low-fidelity model used here is just an example. Deep space and GEO scenarios may benefit
from including a rough third-body contribution into the low-fidelity model. It should also
be noted that this low-/high-fidelity implementation is applicable to any IRK method. While
BLC-IRK is slightly less efficient than GJ 8, BLC-IRK is a brand new technique, leaving
room for additional research and improvement. In contrast, the Gauss–Jackson scheme has
been around for many years and has essentially maximized its potential. Gauss–Jackson
is also neither symplectic nor A-stable. When applicable, parallelization would result in a
significant improvement in efficiency over the GJ 8 scheme.

This paper outlined the dense output algorithm for BLC-IRK as well. We demonstrated
that interpolating a BLC-IRK trajectory using its collocation algorithm yields a high accuracy,
smooth, and continuous solution. We also showed that the accuracy of Lagrange interpolation
of a BLC-IRK trajectory is superior to that of a Dormand and Prince 8(7) propagated orbit.
This is an appealing aspect of collocation methods, where the higher node density provides
a better base for interpolation. This is especially important to conjunction assessment where
solutions are required at various points in time along a trajectory.
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