1. [2360/030922 (10 pts)] Given the matrices

write the word TRUE or FALSE as appropriate. No work need be shown, no work will be graded and no partial credit will be given. $2 \frac{3}{2}$

(a)
$$CB = 4 5^{5}$$
 (b) $Tr B^{T}A^{T} = 2$ (c) $A^{T}A = AA^{T}$ (d) $jC^{T}C 3Ij = 10$ (e) $AB A^{T}B^{T}$ is not defined 11

SOLUTION:

We need to $% \left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\mathbf{r}_{4},\mathbf{r$

(b)

$$A^{T}A^{\frac{4}{5}} = 4 \frac{2}{25}$$

$$A^{T}A^{\frac{4}{5}} = A^{T} \frac{2}{14} \frac{3}{25}$$

$$A^{T}A^{T}A^{\frac{4}{5}} = A^{T} \frac{4}{14} \frac{2}{25}$$
Note: $A^{T}A^{T}A^{T} = 1$ and $IA = A$

$$2 \frac{3}{14}$$

$$A^{\frac{4}{5}} = A^{T} \frac{4}{14} \frac{2}{25}$$
Note: $A^{T}A^{T} = 1$ and $IA = A$

$$2 \frac{3}{14}$$

$$A^{\frac{4}{5}} = A^{T} \frac{4}{14} \frac{2}{25}$$
Note: $A^{T}A^{T} = 1$ and $IX = \frac{4}{5}$

$$A^{\frac{4}{5}} = A^{T} \frac{4}{14} \frac{2}{25}$$
Note: $A^{T}A^{T} = A^{T}A^{\frac{4}{5}} = \frac{4}{14} \frac{3}{14} \frac{2}{14} \frac{3}{14} \frac{2}{14} \frac{3}{14} \frac{3}{14} \frac{2}{14} \frac{3}{14} \frac{3}{14} \frac{2}{14} \frac{3}{14} \frac{3}{14} \frac{3}{14} \frac{2}{14} \frac{3}{14} \frac{3$

5. [2360/030922 (12 pts)] Determine if each of the following sets of vectors forms a basis for R³. Justify your answers.

8232	39	8232	3 2	_39
< 1 3 =		< 1	3	3 =
(a) 425;4	1 ⁵ .	(b) 425;4	15 ; 4	85.
. 0	1,	· 0	1	2 ;

SOLUTION:

Note that the dimension of R^3 is 3 so a basis consists of 3 linearly independent vectors.

- (a) The set contains only 2 vectors and thus cannot form a basis for \mathbb{R}^3 regardless of the linear dependence or independence of the vectors in the set.
- (b) Three vectors in \mathbb{R}^3 can potentially be a basis if they are linearly independent. To check for this, we need to see if the only solution to 23 2 3 2 3 2 3 2 32 3 2 3

is the trivial solution. The determinant of the coef cient matrix is

implying that the system has nontrivial solutions, further implying that the vectors are linearly dependent and thus cannot form a basis for \mathbb{R}^3 .

6. [2360/030922 (24 pts)] The following parts are unrelated.

1

(a) (12 pts) Find the RREF of A =
$$\begin{pmatrix} 2 & & & 3 \\ 1 & 3 & 1 & 9 \\ 41 & 1 & 1 & 15 \\ & 3 & 11 & 5 & 35 \end{pmatrix}$$

(b) (12 pts) We need to solve the system $A^{\ddagger}_{x} = {\ddagger}^{\ddagger}_{b}$. After a number of elementary row operations, the augmented matrix for the system is

2	1	0	0	0	3	5 3
ĝ	0	1	3	0	2	4 Z
4	0	0	0	1	2	1 5
	0	0	0	0	0	0

- i. (10 pts) Use this and the Nonhomogeneous Principle to nd the solution to the original system.
- ii. (2 pts) Find the dimension of the solution space of the original associated homogeneous system, $A^{\frac{d}{X}} = \overset{\#}{0}$. Hint: You have the information you need from part (i); very little additional work is required.

SOLUTION:

(a) 2 3 2 3 2 3 1 3 1 9 1 3 1 9 1 3 1 9 1 3 1 9 1 3 1 9 41 1 1 15 $R_2 = 1R_1 + R_2 40$ 2 2 $85 R_3 = R_2 + R_3 40$ 1 1 $45 R_3 = 311$ 5 $35 R_3 = 3R_1 + R_3$ 0 2 2 $8 R_2 = \frac{1}{2}R_2$ 0 0 0 0

scalar multiplication and thus is not a subspace.